25 resultados para Mithridates VI Eupator, King of Pontus, approximately 132 B.C.-63 B.C
em Indian Institute of Science - Bangalore - Índia
Resumo:
Using computer modeling of three-dimensional structures and structural information available on the crystal structures of HIV-1 protease, we investigated the structural effects of mutations, in treatment-naive and treatment-exposed individuals from India and postulated mechanisms of resistance in clade C variants. A large number of models (14) have been generated by computational mutation of the available crystal structures of drug bound proteases. Localized energy minimization was carried out in and around the sites of mutation in order to optimize the geometry of interactions present. Most of the mutations result in structural differences at the flap that favors the semiopen state of the enzyme. Some of the mutations were also found to confer resistance by affecting the geometry of the active site. The E35D mutation affects the flap structure in clade B strains and E35N and E35K mutation, seen in our modeled strains, have a more profound effect. Common polymorphisms at positions 36 and 63 in clade C also affected flap structure. Apart from a few other residues Gln-58, Asn-83, Asn-88, and Gln-92 and their interactions are important for the transition from the closed to the open state. Development of protease inhibitors by structure-based design requires investigation of mechanisms operative for clade C to improve the efficacy of therapy.
Resumo:
The membrane channel-forming polypeptide, Leu(1)-zervamicin, Ac-Leu-Ile-Gln-Iva-Ile(5)-Thr-Aib-Leu-Aib-Hyp(10) -Gln-Aib-Hyp-Aib-Pro(15)-Phol (Aib: alpha-aminoisobutyric acid; Iva: isovaline; Hyp: 4-hydroxyproline; Phol: phenylalininol) has been analyzed by x-ray diffraction in a third crystal form. Although the bent helix is quite similar to the conformations found in crystals A and B, the amount of bending is more severe with a bending angle approximate to 47 degrees, The water channel formed by the convex polar faces of neighboring helices is larger at the mouth than in crystals A and B, and the water sites have become disordered. The channel is interrupted in the middle by a hydrogen bond between the OH of Hyp(10) and the NH2 of the Gln(11) of a neighboring molecule. The side chain of Gln(11) is wrapped around the helix backbone in an unusual fashion in order that it can augment the polar side of the helix. In the present crystal C there appears to be an additional conformation for the Gln(11) side chain (with approximate to 20% occupancy) that opens the channel for possible ion passage. Structure parameters for C85H140N18O22.xH(2)O.C2H5OH are space group P2(1)2(1)2(1), a = 10.337 (2) Angstrom, b = 28.387 (7) Angstrom, c = 39.864 (11) Angstrom, Z = 4, agreement factor R = 12.99% for 3250 data observed > 3 sigma(F), resolution = 1.2 Angstrom. (C) 1994 John Wiley & Sons, Inc.
Resumo:
Structural specificity for the direct vesicle−vesicle exchange of phospholipids through stable molecular contacts formed by the antibiotic polymyxin B (PxB) is characterized by kinetic and spectroscopic methods. As shown elsewhere [Cajal, Y., Rogers, J., Berg, O. G., & Jain, M. K. (1996) Biochemistry 35, 299−308], intermembrane molecular contacts between anionic vesicles are formed by a small number of PxB molecules, which suggests that a stoichiometric complex may be responsible for the exchange of phospholipids. Larger clusters containing several vesicles are formed where each vesicle can make multiple contacts if sterically allowed. In this paper we show that the overall process can be dissected into three functional steps: binding of PxB to vesicles, formation of stable vesicle−vesicle contacts, and exchange of phospholipids. Polycationic PxB binds to anionic vesicles. Formation of molecular contacts and exchange of monoanionic phospholipids through PxB contacts does not depend on the chain length of the phospholipid. Only monoanionic phospholipids (with methanol, serine, glycol, butanol, or phosphatidylglycerol as the second phosphodiester substituent in the head group) exchange through these contacts, whereas dianionic phosphatidic acid does not. Selectivity for the exchange was also determined with covesicles of phosphatidylmethanol and other phospholipids. PxB does not bind to vesicles of zwitterionic phosphatidylcholine, and its exchange in covesicles is not mediated by PxB. Vesicles of dianionic phospholipids, like phosphatidic acid, bind PxB; however, this phospholipid does not exchange. The structural features of the contacts are characterized by the spectroscopic and chemical properties of PxB at the interface. PxB in intermembrane contacts is readily accessible from the aqueous phase to quenchers and reagents that modify amino groups. Results show that PxB at the interface can exist in two forms depending on the lipid/PxB ratio. Additional studies show that stable PxB-mediated vesicle−vesicle contacts may be structurally and functionally distinct from “stalks”, the putative transient intermediate for membrane fusion. The phenomenon of selective exchange of phospholipids through peptide-mediated contacts could serve as a prototype for intermembrane targeting and sorting of phospholipids during their biosynthesis and trafficking in different compartments of a cell. The protocols and results described here also extend the syllogistic foundations of interfacial equilibria and catalysis.
Resumo:
Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.
Resumo:
Two segmented polyethylene oxides, SPEO-3 and SPEO-4, were prepared using a novel transetherification methodology. Their structures were confirmed by H-1 and C-13 NMR spectroscopy. The complexation of these SPEO's with alkali-metal ions in solution was investigated by C-13 NMR spectroscopy. The mole-fraction method was used to determine the complexation ratio of SPEO with LIClO4 at 25 degrees C, which showed that these formed 1:1 (polymer repeat unit/salt) complexes. The association constant, K, for the complex formation was calculated from the variation of the chemical shift values with salt concentration, using a standard nonlinear least-square fitting procedure. The maximum change in chemical shift (Delta delta) and the K values suggest that both SPEO-3 and SPEO-4 formed stronger complexes with lithium salts than with sodium salts. Unexpectedly, the K values were found to be different, when the variation of delta of different carbons was used in the fitting procedure. This suggests that several possible complexed species may be in equilibrium with the uncomplexed one. Structurally similar model compounds were also prepared and their complexation studies indicated that all of them also formed 1:1 complexes with Li salts. Interestingly, it was observed that the polymers gave higher K values suggesting the formation of more stable complexes in polymers when compared to the model analogues. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Silver iodide-based fast ion conducting glasses containing silver phosphate and silver borate have been studied. An attempt is made to identify the interaction between anions by studying the chemical shifts of31P and11B atoms in high resolution (HR) magic angle spinning (MAS) NMR spectra. Variation in the chemical shifts of31P or11B has been observed which is attributed to the change in the partial charge on the31P or11B. This is indicative of the change in the electronegativity of the anion matrix as a whole. This in turn is interpreted as due to significant interaction among anions. The significance of such interaction to the concept of structural unpinning of silver ions in fast ion conducting glasses is discussed.
Resumo:
Mesoporous intercalation compounds consisting of two differentdistributions of pores represent a potentially attractive material for high-rate cathodes. A mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via a solution-based polymer templating technique. The precursor of the LiFePO4/C composite is heated at different temperatures in the range from 600 to 800 degrees C to study the effect of crystallinity, porosity, and morphology on the electrochemical performance. The composite is found to attain reduction in the surface area, carbon content, and porosity upon increasing temperature. Nonetheless, the composite prepared at 700 degrees C with pore-size distributions of around 4 and 50 nm exhibits a high rate capability and stable capacity retention upon cycling.
Resumo:
The expression of cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes has been studied as a function of development in rat liver. The levels of cytochrome P-450 (b+e) mRNAs and their transcription rates are too low for detection in the 19-day old fetal liver before or after phenobarbitone treatment. However, glutathione transferase (Ya+Yc) mRNAs can be detected in the fetal liver as well as their induction after phenobarbitone treatment can be demonstrated. These mRNAs contents as well as their inducibility with phenobarbitone are lower in maternal liver than that of adult nonpregnant female rat liver. Steroid hormone administration to immature rats blocks substantially the phenobarbitone mediated induction of the two mRNA families as well as their transcription. It is suggested that steroid hormones constitute one of the factors responsible for the repression of the cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes in fetal liver.
Resumo:
Cylindrical specimens of textured commercial pure alpha-titanium plate, cut with the cylinder axis along the rolling direction for one set of experiments and in the long transverse direction for the other set, were compressed at strain rates in the range of 0.001 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates greater-than-or-equal-to 1 s-1, both sets of specimens exhibited adiabatic shear bands, but the intensity of shear bands was found to be higher in the rolling direction specimens than in the long transverse direction specimens. At strain rates -0.1 s-1, the material deformed in a microstructurally inhomogeneous fashion. For the rolling direction specimens, cracking was observed at 100-degrees-C and at strain rates -0.1 s-1. This is attributed to dynamic strain aging. Such cracking was not observed in the long transverse specimens. The differences in the intensity of adiabatic shear bands and that of dynamic strain aging between the two sets of test specimens are attributed to the strong crystallographic texture present in these plates.
Resumo:
Vaccines against Neisseria meningitidis group C are based on its alpha-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation alpha-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the alpha-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of alpha-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight alpha-2,9-polysialic acid in a nonprocessive fashion when initiated with an alpha-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the alpha-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.
Resumo:
The hydrolysis of beta-lactam antibiotics by beta-lactamases is one of the major bacterial defense systems. These enzymes generally hydrolyze a variety of antibiotics including the latest generation of cephalosporins, cephamycins and imipenem. In this paper, the effect of cephalosporins-based antibiotics on the peroxynitrite-mediated nitration of protein tyrosine is described. Although some of the antibiotics have weak inhibitory effect on the nitration reactions in the absence of beta-lactamase, they exhibit very strong inhibition in the presence of beta-lactamase. This is due to the elimination of heterocyclic thiol/thione moieties from cephalosporins by beta-lactamase-mediated hydrolysis. After the elimination, the thiols/thiones effectively scavenge peroxynitrite, leading to the inhibition of the nitration reactions.
Resumo:
C17H17N3O2, M(r) = 295.34, orthorhombic, P2(1)2(1)2(1), a = 7.659 (1), b = 12.741 (1), c = 15.095 (1) angstrom, V = 1473.19 (2) angstrom 3, Z = 4, D(m) = 1.33, D(x) = 1.32 Mg m-3, lambda(Cu K-alpha) = 1.5418 angstrom, mu = 0.68 mm-1, F(000) = 624, T = 295 K, R = 0.031 for 1549 unique observed reflections with I > 2.5-sigma(I). The seven-membered heterocyclic ring adopts a boat conformation flattened at the nitroso end of the ring. The substituent phenyl rings occupy pseudo-axial positions and the nitroso group is coplanar with the C(2), N(1), C(7) plane of the central ring. The crystal structure is stabilized by intermolecular N-H...O and weak C-H...O hydrogen bonds.