3 resultados para Misclassification
em Indian Institute of Science - Bangalore - Índia
Resumo:
The problem of learning correct decision rules to minimize the probability of misclassification is a long-standing problem of supervised learning in pattern recognition. The problem of learning such optimal discriminant functions is considered for the class of problems where the statistical properties of the pattern classes are completely unknown. The problem is posed as a game with common payoff played by a team of mutually cooperating learning automata. This essentially results in a probabilistic search through the space of classifiers. The approach is inherently capable of learning discriminant functions that are nonlinear in their parameters also. A learning algorithm is presented for the team and convergence is established. It is proved that the team can obtain the optimal classifier to an arbitrary approximation. Simulation results with a few examples are presented where the team learns the optimal classifier.
Resumo:
Sensory nerve action potentials (SNAPs) and compound nerve action potentials (CNAPs) were recorded from 25 normal subjects and 21 hanseniasis patients following electrical stimulation of the median nerve at the wrist. The various nerve conduction parameters from the affected nerves of the patients were compared with those from the clinically normal nerves of patients as well as data from healthy individuals. Analysis of the data and clinical correlation studies indicate the suitability of amplitudes of the SNAPs and CNAPs rather than the nerve conduction velocities in better characterizing the neuropathy of the patients. Significantly reduced amplitudes of responses from clinically unaffected nerves of patients indicate an early stage of neuropathy, thus being of predictive value. Further, a discriminant classifier, trained on data from clinically affected nerves of patients, classified most of the data from clinically unaffected nerves of patients as abnormal. This indicates that clinical neurophysiological studies can reveal leprous neuropathy much before it becomes clinically evident by means of sensory or motor loss. A discriminant score involving only the parameters of motor threshold, amplitude of digit potential and palm nerve conduction velocity is able to classify almost all of the normal and abnormal responses. The authors hope that further confirmative studies might ultimately lead to the use of the study of distal sensory conduction in the upper limbs in possible screening of a population exposed to Mycobacterium leprae. On the other hand, misclassification of a normal person occurred and suggests that further refinement of the methods is necessary in order to facilitate wider use of the methods under held conditions.
Resumo:
This paper addresses the problem of maximum margin classification given the moments of class conditional densities and the false positive and false negative error rates. Using Chebyshev inequalities, the problem can be posed as a second order cone programming problem. The dual of the formulation leads to a geometric optimization problem, that of computing the distance between two ellipsoids, which is solved by an iterative algorithm. The formulation is extended to non-linear classifiers using kernel methods. The resultant classifiers are applied to the case of classification of unbalanced datasets with asymmetric costs for misclassification. Experimental results on benchmark datasets show the efficacy of the proposed method.