13 resultados para Minorca Island
em Indian Institute of Science - Bangalore - Índia
Resumo:
Extensive measurements of aerosol radiative and microphysical properties were made at an island location, Minicoy (8.3 degrees N, 73.04 degrees E) in the southern Arabian Sea. A large variability in aerosol characteristics associated with changes in air mass and precipitation characteristics was observed. Six distinct transport pathways were identified on the basis of cluster analysis. The Indo-Gangetic Plain, along with the northern Arabian Sea and west Asia (NWA), was identified to be the region having the highest potential for aerosol mass loading at the island. This estimate is based on the concentration weighted trajectory as well as cluster analysis. Dust transport from the NWA region was found to make a substantial contribution to the supermicron mass fraction. The black carbon mass mixing ratios observed were the lowest compared to previous measurements over this region. Consequently, the atmospheric radiative forcing efficiency was low and was in the range 10-28 W m(-2).
Resumo:
The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.
Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli.
Resumo:
The type III secretion system (T3SS) encoded by the Salmonella pathogenicity island 2 (SPI2) has a central role in systemic infections by Salmonella enterica and for the intracellular phenotype. Intracellular S. enterica uses the SPI2-encoded T3SS to translocate a set of effector proteins into the host cell, which modify host cell functions, enabling intracellular survival and replication of the bacteria. We sought to determine whether specific functions of the SPI2-encoded T3SS can be transferred to heterologous hosts Salmonella bongori and Escherichia coli Mutaflor, species that lack the SPI2 locus and loci encoding effector proteins. The SPI2 virulence locus was cloned and functionally expressed in S. bongori and E. coli. Here, we demonstrate that S. bongori harboring the SPI2 locus is capable of secretion of SPI2 substrate proteins under culture conditions, as well as of translocation of effector proteins under intracellular conditions. An SPI2-mediated cellular phenotype was induced by S. bongori harboring the SPI2 if the sifA locus was cotransferred. An interference with the host cell microtubule cytoskeleton, a novel SPI2-dependent phenotype, was observed in epithelial cells infected with S. bongori harboring SPI2 without additional effector genes. S. bongori harboring SPI2 showed increased intracellular persistence in a cell culture model, but SPI2 transfer was not sufficient to confer to S. bongori systemic pathogenicity in a murine model. Transfer of SPI2 to heterologous hosts offers a new tool for the study of SPI2 functions and the phenotypes of individual effectors.
Resumo:
Salmonella typhimurium causes an invasive disease in mice that has similarities to human typhoid. A type III protein secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is essential for virulence in mice, as well as survival and multiplication within macrophages. Reactive nitrogen intermediates (RNI) synthesized by inducible nitric oxide synthase (iNOS) are involved in the control of intracellular pathogens, including S. typhimurium. We studied the effect of Salmonella infection on iNOS activity in macrophages. Immunofluorescence microscopy demonstrated efficient colocalization of iNOS with bacteria deficient in SPI2 but not wild-type Salmonella, and suggests that the SPI2 system interferes with the localization of iNOS and Salmonella. Furthermore, localization of nitrotyrosine residues in the proximity was observed for SPI2 mutant strains but not wild-type Salmonella, indicating that peroxynitrite, a potent antimicrobial compound, is excluded from Salmonella-containing vacuoles by action of SPI2. Altered colocalization of iNOS with intracellular Salmonella required the function of the SPI2-encoded type III secretion system, but not of an individual "Salmonella translocated effector." Inhibition of iNOS increased intracellular proliferation of SPI2 mutant bacteria and, to a lesser extent, of wild-type Salmonella. The defect in systemic infection of a SPI2 mutant strain was partially restored in iNOS(-/-) mice. In addition to various strategies to detoxify RNI or repair damage due to RNI, avoidance of colocalization with RNI is important in adaptation of a pathogen to an intracellular life style.
Resumo:
Mixed-species foraging associations may form to enhance feeding success or to avoid predators. We report the costs and consequences of an unusual foraging association between an endemic foliage gleaning tupaid (Nicobar treeshrew Tupaia nicobarica) and two species of birds; one an insectivorous commensal (greater racket-tailed drongo Dicrurus paradiseus) and the other a diurnal raptor and potential predator (Accipiter sp.). In an alliance driven, and perhaps engineered, by drongos, these species formed cohesive groups with predictable relationships. Treeshrew breeding pairs were found more frequently than solitary individuals with sparrowhawks and were more likely to tolerate sparrowhawks in the presence of drongos. Treeshrews maintained greater distances from sparrowhawks than drongos, and permitted the raptors to come closer when drongos were present. Treeshrew foraging rates declined in the presence of drongos; however, the latter may provide them predator avoidance benefits. The choice of the raptor to join the association is intriguing; particular environmental resource states may drive the evolution of such behavioural strategies. Although foraging benefits seem to be the primary driver of this association, predator avoidance also influences interactions, suggesting that strategies driving the formation of flocks may be complex and context dependent with varying benefits for different actors.
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
Bangalore is experiencing unprecedented urbanisation and sprawl in recent times due to concentrated developmental activities with impetus on industrialisation for the economic development of the region. This concentrated growth has resulted in the increase in population and consequent pressure on infrastructure, natural resources and ultimately giving rise to a plethora of serious challenges such as climate change, enhanced green-house gases emissions, lack of appropriate infrastructure, traffic congestion, and lack of basic amenities (electricity, water, and sanitation) in many localities, etc. This study shows that there has been a growth of 632% in urban areas of Greater Bangalore across 37 years (1973 to 2009). Urban heat island phenomenon is evident from large number of localities with higher local temperatures. The study unravels the pattern of growth in Greater Bangalore and its implication on local climate (an increase of ~2 to 2.5 ºC during the last decade) and also on the natural resources (76% decline in vegetation cover and 79% decline in water bodies), necessitating appropriate strategies for the sustainable management.
Resumo:
The tug of war between a pathogen and its host has been one of the most amazing stories in the field of microbial pathogenesis for ages. The strongest known species of all living organisms is the Homo sapiens and yet it is incredible how a pathogen of the size of few microns is smart enough to defeat this mightiest group of survivors. It is of utmost interest to understand the mechanisms behind the successful habitation of a pathogen inside the ever-resisting and complicate human body. Numerous examples of diseases caused by such pathogens exist which intrigues us to venture in the world of host-pathogen interactions.
Resumo:
The present study reports coral mortality, driven primarily by coral diseases, around Shingle Island, Gulf of Mannar (GOM), Indian Ocean. In total, 2910 colonies were permanently monitored to assess the incidence of coral diseases and consequent mortality for 2 yr. Four types of lesions consistent with white band disease (WBD), black disease (BD), white plaque disease (WPD), and pink spot disease (PSD) were recorded from 4 coral genera: Montipora, Pocillopora, Acropora, and Porites. Porites were affected by 2 disease types, while the other 3 genera were affected by only 1 disease type. Overall disease prevalence increased from 8% (n = 233 colonies) to 41.9% (n = 1219) over the 2 yr study period. BD caused an unprecedented 100% mortality in Pocillopora, followed by 20.4 and 13.1% mortality from WBD in Montipora and Acropora, respectively. Mean disease progression rates of 0.8 +/- 1.0 and 0.6 +/- 0.5 cm mo(-1) over live coral colonies were observed for BD and WBD. Significant correlations between temperature and disease progression were observed for BD (r = 0.86, R-2 = 0.75, p < 0.001) and WBD (R-2 = 0.76, p < 0.001). This study revealed the increasing trend of disease prevalence and progression of disease over live coral in a relatively limited study area; further study should investigate the status of the entire coral reef in the GOM and the role of diseases in reef dynamics.
Resumo:
Intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) manipulate their host cells through the interplay of various virulence factors. A multitude of such virulence factors are encoded on the genome of S. Typhimurium and are usually organized in pathogenicity islands. The virulence-associated genomic stretch of STM3117-3120 has structural features of pathogenicity islands and is present exclusively in non-typhoidal serovars of Salmonella. It encodes metabolic enzymes predicted to be involved in methylglyoxal metabolism. STM3117-encoded lactoylglutathione lyase significantly impacts the proliferation of intracellular Salmonella. The deletion mutant of STM3117 (Delta lgl) fails to grow in epithelial cells but hyper-replicates in macrophages. This difference in proliferation outcome was the consequence of failure to detoxify methylglyoxal by Delta lgl, which was also reflected in the form of oxidative DNA damage and upregulation of kefB in the mutant. Within macrophages, the toxicity of methylglyoxal adducts elicits the potassium efflux channel (KefB) in the mutant which subsequently modulates the acidification of mutant-containing vacuoles (MCVs). The perturbation in the pH of the MCV milieu and bacterial cytosol enhances the Salmonella pathogenicity island 2 translocation in Delta lgl, increasing its net growth within macrophages. In epithelial cells, however, the maturation of Delta lgl-containing vacuoles were affected as these non-phagocytic cells maintain less acidic vacuoles compared to those in macrophages. Remarkably, ectopic expression of Toll-like receptors 2 and 4 on epithelial cells partially restored the survival of Delta lgl. This study identified a novel metabolic enzyme in S. Typhimurium whose activity during intracellular infection within a given host cell type differentially affected the virulence of the bacteria.
Resumo:
Island systems from around the world have provided fascinating opportunities for studies pertaining to various evolutionary processes. One recurring feature of isolated islands is the presence of endemic radiations. In this regard, the Indian subcontinent is an interesting entity given it has been an island during much of its history following separation from Madagascar and currently is isolated from much of Eurasia by the Himalayas in the north and the Indian Ocean in the south. Not surprisingly, recent molecular studies on a number of endemic taxa from India have reported endemic radiations. These studies suggest that the uniqueness of Indian biota is not just due to its diverse origin, but also due to evolution in isolation. The isolation of India has generated some peculiarities typically seen on oceanic islands. However, these patterns might be confined to, groups with low dispersal ability.