6 resultados para Military maneuvers.

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithms for planning quasistatic attitude maneuvers based on the Jacobian of the forward kinematic mapping of fully-reversed (FR) sequences of rotations are proposed in this paper. An FR sequence of rotations is a series of finite rotations that consists of initial rotations about the axes of a body-fixed coordinate frame and subsequent rotations that undo these initial rotations. Unlike the Jacobian of conventional systems such as a robot manipulator, the Jacobian of the system manipulated through FR rotations is a null matrix at the identity, which leads to a total breakdown of the traditional Jacobian formulation. Therefore, the Jacobian algorithm is reformulated and implemented so as to synthesize an FR sequence for a desired rotational displacement. The Jacobian-based algorithm presented in this paper identifies particular six-rotation FR sequences that synthesize desired orientations. We developed the single-step and the multiple-step Jacobian methods to accomplish a given task using six-rotation FR sequences. The single-step Jacobian method identifies a specific FR sequence for a given desired orientation and the multiple-step Jacobian algorithm synthesizes physically feasible FR rotations on an optimal path. A comparison with existing algorithms verifies the fast convergence ability of the Jacobian-based algorithm. Unlike closed-form solutions to the inverse kinematics problem, the Jacobian-based algorithm determines the most efficient FR sequence that yields a desired rotational displacement through a simple and inexpensive numerical calculation. The procedure presented here is useful for those motion planning problems wherein the Jacobian is singular or null.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts. The Lanchester attrition model is used to develop the dynamical equations governing the variation in force strength. Three different allocation schemes - Time-Zero-Allocation (TZA), Allocate-Assess-Reallocate (AAR), and Continuous Constant Allocation (CCA) - are considered and the optimal solutions are obtained in each case. Numerical examples are given to support the analytical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts. The Lanchester attrition model is used to develop the dynamical equations governing the variation in force strength. Three different allocation schemes - Time-Zero-Allocation (TZA), Allocate-Assess-Reallocate (AAR), and Continuous Constant Allocation (CCA) - are considered and the optimal solutions are obtained in each case. Numerical examples are given to support the analytical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A resource interaction based game theoretical model for military conflicts is presented in this paper. The model includes both the spatial decision capability of adversaries (decision regarding movement and subsequent distribution of resources) as well as their temporal decision capability (decision regarding level of allocation of resources for conflict with adversary’s resources). Attrition is decided at present by simple deterministic models. An additional feature of this model is the inclusion of the possibility of a given resource interacting with several resources of the adversary.The decisions of the adversaries is determined by solving for the equilibrium Nash strategies given that the objectives of the adversaries may not be in direct conflict. Examples are given to show the applicability of these models and solution concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear adaptive approach is presented to achieve rest-to-rest attitude maneuvers for spacecrafts in the presence of parameter uncertainties and unknown disturbances. A nonlinear controller, designed on the principle of dynamic inversion achieves the goals for the nominal model but suffers performance degradation in the presence of off-nominal parameter values and unwanted inputs. To address this issue, a model-following neuro-adaptive control design is carried out by taking the help of neural networks. Due to the structured approach followed here, the adaptation is restricted to the momentum level equations.The adaptive technique presented is computationally nonintensive and hence can be implemented in real-time. Because of these features, this new approach is named as structured model-following adaptive real-time technique (SMART). From simulation studies, this SMART approach is found to be very effective in achieving precision attitude maneuvers in the presence of parameter uncertainties and unknown disturbances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a variation of the pure proportional navigation guidance law, called augmented pure proportional navigation, to account for target maneuvers, in a realistic nonlinear engagement geometry, and presents its capturability analysis. These results are in contrast to most work in the literature on augmented proportional navigation laws that consider a linearized geometry imposed upon the true proportional navigation guidance law. Because pure proportional navigation guidance law is closer to a realistic implementation of proportional navigation than true proportional navigation law, and any engagement process is predominantly nonlinear, the results obtained in this paper are more realistic than any available in the literature. Sufficient conditions on speed ratio, navigation gain, and augmentation parameter for capturability, and boundedness of lateral acceleration, against targets executing piecewise continuous maneuvers with time, are obtained. Further, based on a priori knowledge of the maximum maneuver capability of the target, a significant simplification of the guidance law is proposed in this paper. The proposed guidance law is also shown to require a shorter time of interception than standard pure proportional navigation and augmented proportional navigation. To remove chattering in the interceptor maneuver at the end phase of the engagement, a hybrid guidance law using augmented pure proportional navigation and pure proportional navigation is also proposed. Finally, the guaranteed capture zones of standard and augmented pure proportional navigation guidance laws against maneuvering targets are analyzed and compared in the normalized relative velocity space. It is shown that the guaranteed capture zone expands significantly when augmented pure proportional navigation is used instead of pure proportional navigation. Simulation results are given to support the theoretical findings.