10 resultados para Mike Heithaus
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.
Resumo:
Experimental studies were performed to investigate the role and influence of grain movement on macrosegregation and microstructure evolution during equiaxed solidification. Casting experiments were performed with a grain-refined Al-Cu alloy in a rectangular sand mold. For the aluminum alloy studied, the equiaxed grains are lighter than the bulk melt and thus float up. Experiments were designed to investigate floatation phenomena of equiaxed grains in the presence of thermosolutal convection. Cooling curves were recorded at key locations in both the casting and the chill. Quantitative image analysis and spatial chemical analysis were performed on the solidified casting to observe the chemical and microstructural inhomogeneity created by the melt convection and solid floatation. Several notable features that can be attributed to grain movement were observed in temperature histories, macrosegregation patterns, and microstructures. In our experiments, the floatation of grains influences the thermal conditions and the overall flow direction in the casting cavity. In some cases, the induced flow resulting from the grain movement caused a flow reversal. This in turn influences the solidification direction, microstructure evolution, and the overall macrosegregation behavior.
Resumo:
Shoe-mounted inertial sensors offer a convenient way to track pedestrians in situations where other localization systems fail. This tutorial outlines a simple yet effective approach for implementing a reasonably accurate tracker. This Web extra presents the Matlab implementation and a few sample recordings for implementing the pedestrian inertial tracking system using an error-state Kalman filter for zero-velocity updates (ZUPTs) and orientation estimation.
Resumo:
Stable isotopes from a U/Th dated aragonite stalagmite from the Central Kumaun Himalaya provide evidence of variation in climatic conditions in the last similar to 1800 years. The delta O-18 and delta C-13 values vary from -4.3 parts per thousand to -7.6 parts per thousand and -3.4 parts per thousand to -9.1 parts per thousand respectively, although the stalagmite was not grown in isotopic equilibrium with cave drip water, a clear palaeoclimatic signal in stalagmite delta O-18 values is evident based on the regional climate data. The stalagmite showed a rapid growth rate during 830-910 AD, most likely the lower part of Medieval Warm Period (MWP), and 1600-1640 AD, the middle part of Little Ice Age (LIA). Two distinct phases of reduced precipitation are marked by a 2 parts per thousand shift in 8180 values towards the end of MWP (similar to 1080-1160 AD) and after its termination from similar to 1210 to 1440 AD. The LIA (similar to 1440-1880 AD) is represented by sub-tropical climate similar to modern conditions, whereas the post-LIA was comparatively drier. The Inter Tropical Convergence Zone (ITCZ) was located over the cave location during wetter/warmer conditions. When it shifted southward, precipitation over the study area decreased. A prominent drop in delta O-18 and delta C-13 values during the post-LIA period may also have been additionally influenced by anthropogenic activity in the area. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
The similar to 700-km-long ``central seismic gap'' is the most prominent segment of the Himalayan front not to have ruptured in a major earthquake during the last 200-500 yr. This prolonged seismic quiescence has led to the proposition that this region, with a population >10 million, is overdue for a great earthquake. Despite the region's recognized seismic risk, the geometry of faults likely to host large earthquakes remains poorly understood. Here, we place new constraints on the spatial distribution of rock uplift within the western similar to 400 km of the central seismic gap using topographic and river profile analyses together with basinwide erosion rate estimates from cosmogenic Be-10. The data sets show a distinctive physiographic transition at the base of the high Himalaya in the state of Uttarakhand, India, characterized by abrupt strike-normal increases in channel steepness and a tenfold increase in erosion rates. When combined with previously published geophysical imaging and seismicity data sets, we interpret the observed spatial distribution of erosion rates and channel steepness to reflect the landscape response to spatially variable rock uplift due to a structurally coherent ramp-flat system of the Main Himalayan Thrust. Although it remains unresolved whether the kinematics of the Main Himalayan Thrust ramp involve an emergent fault or duplex, the landscape and erosion rate patterns suggest that the decollement beneath the state of Uttarakhand provides a sufficiently large and coherent fault segment capable of hosting a great earthquake.
Resumo:
The central part of the Himalaya (Kumaun and Garhwal Provinces of India) is noted for its prolonged seismic quiescence, and therefore, developing a longer-term time series of past earthquakes to understand their recurrence pattern in this segment assumes importance. In addition to direct observations of offsets in stratigraphic exposures or other proxies like paleoliquefaction, deformation preserved within stalagmites (speleothems) in karst system can be analyzed to obtain continuous millennial scale time series of earthquakes. The Central Indian Himalaya hosts natural caves between major active thrusts forming potential storehouses for paleoseismological records. Here, we present results from the limestone caves in the Kumaun Himalaya and discuss the implications of growth perturbations identified in the stalagmites as possible earthquake recorders. This article focuses on three stalagmites from the Dharamjali Cave located in the eastern Kumaun Himalaya, although two other caves, one of them located in the foothills, were also examined for their suitability. The growth anomalies in stalagmites include abrupt tilting or rotation of growth axes, growth termination, and breakage followed by regrowth. The U-Th age data from three specimens allow us to constrain the intervals of growth anomalies, and these were dated at 4273 +/- 410 years BP (2673-1853 BC), 2782 +/- 79 years BP (851-693 BC), 2498 +/- 117 years BP (605-371 BC), 1503 +/- 245 years BP (262-752 AD), 1346 +/- 101 years BP (563-765 AD), and 687 +/- 147 years BP (1176-1470 AD). The dates may correspond to the timings of major/great earthquakes in the region and the youngest event (1176-1470 AD) shows chronological correspondence with either one of the great medieval earthquakes (1050-1250 and 1259-1433 AD) evident from trench excavations across the Himalayan Frontal Thrust.