8 resultados para Middle and secondary schools
em Indian Institute of Science - Bangalore - Índia
Resumo:
Energy loss spectra of superconducting YBa2Cu3O6.9' Bi1.5Pb0.5Ca2.5Sr1.5Cu3O10+δ and Tl2CaBa2Cu3O8 obtained at primary electron energies in the 170–310 eV range show features reflecting the commonalities in their electronic structures. The relative intensity of the plasmon peak shows a marked drop across the transition temperature. Secondary electron emission spectra of the cuprates also reveal some features of the electronic structure.
Resumo:
Consanguineous marriages are strongly favoured in the state of Karnataka. Of 65492 marriages studied 33·07% were consanguineous, equivalent to a coefficient of inbreeding (F) of 0·0298. The twinning rate was low, 6·9 per thousand, whereas the secondary sex ratio, 0·5221, was higher than in comparable major human populations. Consanguinity exerted no significant effect on either parameter. The results also indicate that consanguinity is not associated with excess antenatal losses and suggest the possibility of enhanced selection against mutations at X chromosome loci.
Resumo:
Sequence specific resonance assignments have been obtained for H-1, C-13 and N-15 nuclei of the 21 kDa (188 residues long) glutamine amido transferase subunit of guanosine monophosphate synthetase from Methanocaldococcus jannaschii. From an analysis of H-1 and C-13(alpha), C-13(beta) secondary chemical shifts, (3) JH(N)H(alpha) scalar coupling constants and sequential, short and medium range H-1-H-1 NOEs, it was deduced that the glutamine amido transferase subunit has eleven strands and five helices as the major secondary structural elements in its tertiary structure.
Resumo:
In this paper, we analyze the coexistence of a primary and a secondary (cognitive) network when both networks use the IEEE 802.11 based distributed coordination function for medium access control. Specifically, we consider the problem of channel capture by a secondary network that uses spectrum sensing to determine the availability of the channel, and its impact on the primary throughput. We integrate the notion of transmission slots in Bianchi's Markov model with the physical time slots, to derive the transmission probability of the secondary network as a function of its scan duration. This is used to obtain analytical expressions for the throughput achievable by the primary and secondary networks. Our analysis considers both saturated and unsaturated networks. By performing a numerical search, the secondary network parameters are selected to maximize its throughput for a given level of protection of the primary network throughput. The theoretical expressions are validated using extensive simulations carried out in the Network Simulator 2. Our results provide critical insights into the performance and robustness of different schemes for medium access by the secondary network. In particular, we find that the channel captures by the secondary network does not significantly impact the primary throughput, and that simply increasing the secondary contention window size is only marginally inferior to silent-period based methods in terms of its throughput performance.
Resumo:
The end of the Palaeozoic is marked by two mass-extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative C-13 anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high-resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn-extinction and post-extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered by dyke injection of coal-beds, as in the Changhsingian extinction, and may instead have been triggered directly by the Emeishan large igneous province or by the interaction of Emeishan basalts with platform carbonates.
Resumo:
Secondary atomization characteristics of burning bicomponent (ethanol-water) droplets containing titania nanoparticles (NPs) in dilute (0.5% and 1 wt.%) and dense concentrations (5% and 7.5 wt.%) are studied experimentally at atmospheric pressure under normal gravity. It is observed that both types of nanofuel droplets undergo distinct modes of secondary breakup, which are primarily responsible for transporting particles from the droplet domain to the flame zone. For dilute nanosuspensions, disruptive response is characterized by low intensity atomization modes that cause small-scale localized flame distortion. In contrast, the disruption behavior at dense concentrations is governed by high intensity bubble ejections, which result in severe disruption of the flame envelope.
Resumo:
The effect of viscosity stratification on the different mechanism of transition to turbulence is not well understood. In this paper, a viscosity variation normal to the flow in a channel is investigated. The primary and secondary instability are computed, and the transient growth is analysed. It is found that viscosity stratification can have different effects in each case.