249 resultados para Microstructure Variation

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vacancy, void incorporation and Si-H-x configuration in hydrogenated amorphous silicon (a-Si:H) thin films was studied. Films were grown by Direct Current (DC), pulsed DC and Radio Frequency (RF) magnetron sputtering. Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the films and found that, the a-Si: H films grown by DC magnetron sputtering are of good quality compared to pulsed DC and RF deposited films. The effect of Substrate temperature (T-S) on the total hydrogen concentration (C-H), configuration of hydrogen bonding, density (decided by the vacancy and void incorporation) and the microstructure factor (R*) was studied. T-S is found to be an active parameter in affecting the above said properties of the films. The films contain both vacancies and voids. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. It is found that T-S favors monohydride (Si-H) bonding at the cost of dihydride (Si-H-2) bonding. This dividing line is at C-H=14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be zero for as deposited DC films at T-S=773K. The threshold C-H for void dominated region is found to be C-H=23 at.% H for RF, C-H=18 at.% H for PDC and C-H similar to 14 at.%H for DC sputter deposited films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructure, thermal stability and hardness of ultra-fine grained (UFG) Ni produced by 12 passes of equal channel angular pressing (ECAP) through the route Bc were studied. Comparing the microstructure and hardness of the as-ECAPed samples with the published data on UFG Ni obtained after 8 passes of ECAP through the route Bc reveals a smaller average grain size (230 nm in the present case compared with 270 nm in 8-pass Ni), significantly lower dislocation density (1.08 x 10(14) m(-2) compared with 9 x 10(14) m(-2) in 8-pass Ni) and lower hardness (2 GPa compared with 2.45 GPa for 8-pass Ni). Study of the thermal stability of the 12-pass UFG Ni revealed that recovery is dominant in the temperature range 150-250A degrees C and recrystallisation occurred at temperatures > 250 A degrees C. The UFG microstructure is relatively stable up to about 400 A degrees C. Due to the lower dislocation density and consequently a lower stored energy, the recrystallisation of 12-pass ECAP Ni occurred at a higher temperature (similar to 250 A degrees C) compared with the 8-pass Ni (similar to 200 A degrees C). In the 12-pass Nickel, hardness variation shows that its dependence on grain size is inversely linear rather than the common grain size(-0.5) dependence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the controlled variation of luminescence of ZnO nanostructures from intense ultraviolet to bright visible light. Deliberate addition of surfactants in the reaction medium not only leads to growth anisotropy of ZnO, but also alters the luminescence property. ZnO nanoclusters comprising of very fine particles with crystallite sizes approximate to 15-22nm were prepared in a non-aqueous medium, either from a single alcohol or from their mixtures. Introduction of the aqueous solution of the surfactant helps in altering the microstructure of ZnO nanostructure to nanorods, nanodumb-bells as well as the luminescence property. The as-prepared powder material is found to be well crystallized. Defects introduced by the surfactant in aqueous medium play an important role in substantial transition in the optical luminescence. Chromaticity coordinates were found to lie in the yellow region of color space. This gives an impression of white light emission from ZnO nanocrystals, when excited by a blue laser. Oxygen vacancy is described as the major defect responsible for visible light emission as quantified by X-ray photoelectron spectroscopy and Raman analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modulus variation of NiTi shape memory alloy has been investigated at microstructural level through nano dynamical mechanical analysis and compared with bulk experimental measurements. The differences between the modulus values at the macro and micro level as well as within the micro level are discussed and the corresponding variations have been explained based on the crystal structure, orientation and misorientation. The experimental results confirm a higher modulus value for the martensite phase that is in agreement with the theoretical predictions. (C) 2015 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of microstructure and texture during deformation of two-phase (alpha + beta) brass was studied for different initial microstructure and texture. The deformation processing involved unidirectional and multi-step cross-rolling. The bulk textures were determined by measuring the pole figures and calculating the orientation distribution function ODF for both alpha (fcc) and beta (bcc) phases, while the microstructure and other microstructural parameters were measured through optical microscopy and scanning electron microscopy with electron back scatter diffraction (SEM-EBSD). Results indicate that textures developed after unidirectional rolling and multi-step cross-rolling are significantly different. The variation in initial texture had a pronounced effect on the development of texture in the alpha phase during subsequent deformation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIP) NIMONIC AP-1 superalloy is characterized using processing maps in the temperature range 950-degrees-C to 1200-degrees-C and strain rate range 0.001 to 100 s-1. The dynamic materials model has been used for developing the processing maps which show the variation of the efficiency of power dissipation given by [2m/(m +1)] with temperature and strain rate, with m being the strain rate sensitivity of flow stress. The processing map revealed a domain of dynamic recrystallization with a peak efficiency of 40 pct at 1125-degrees-C and 0.3 s-1, and these are the optimum parameters for hot working. The microstructure developed under these conditions is free from prior particle boundary (PPB) defects, cracks, or localized shear bands. At 100 s-1 and 1200-degrees-C, the material exhibits inter-crystalline cracking, while at 0.001 s-1, the material shows wedge cracks at 1200-degrees-C and PPB cracking at 1000-degrees-C. Also at strain rates higher than 10 s-1, adiabatic shear bands occur; the limiting conditions for this flow instability are accurately predicted by a continuum criterion based on the principles of irreversible thermodynamics of large plastic flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of strain path change during rolling has been investigated for copper and nickel using X-ray diffraction and electron back scatter diffraction as well as crystal plasticity simulations. Four different strain paths namely: (i) unidirectional rolling; (ii) reverse rolling; (iii) two-step cross rolling and (iv) multi-step cross rolling were employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross rolled samples showed weaker texture with a prominent Bs {1 1 0}< 1 1 2 > and P(B(ND)) {1 1 0}< 1 1 1 > component in contrast to the unidirectional and reverse rolled samples where strong S {1 2 3}< 6 3 4 > and Cu {1 1 2}< 1 1 1 > components were formed. This was more pronounced for copper samples compared to nickel. The cross rolled samples were characterized by lower anisotropy and Taylor factor as well as less variation in Lankford parameter. Viscoplastic self-consistent simulations indicated that slip activity on higher number of octahedral slip systems can explain the weaker texture as well as reduced anisotropy in the cross rolled samples. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of texture and microstructure during recrystallization is studied for two-phase copper alloy (Cu–40Zn) with a variation of the initial texture and microstructure (hot rolled and solution treated) as well as the mode of rolling (deformation path: uni-directional rolling and cross rolling). The results of bulk texture have been supported by micro-texture and microstructure studies carried out using electron back scatter diffraction (EBSD). The initial microstructural condition as well as the mode of rolling has been found to alter the recrystallization texture and microstructure. The uni-directionally rolled samples showed a strong Goss and BR {236}385 component while a weaker texture similar to that of rolling evolved for the cross-rolled samples in the α phase on recrystallization. The recrystallization texture of the β phase was similar to that of the rolling texture with discontinuous 101 α and {111} γ fiber with high intensity at {111}101. For a given microstructure, the cross-rolled samples showed a higher fraction of coincident site lattice Σ3 twin boundaries in the α phase. The higher fraction of Σ3 boundaries is explained on the basis of the higher propensity of growth accidents during annealing of the cross-rolled samples. The present investigation demonstrates that change in strain path, as introduced during cross-rolling, could be a viable tool for grain boundary engineering of low SFE fcc materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of microstructure and texture gradient in warm Accumulative Roll Bonded Cu-Cu multilayer has been studied. Grain size distribution is multimodal and exhibits variation from middle to surface layer. Evolution of texture is largely influenced by shear, in addition to rolling deformation. This leads to the formation of a texture comprising of high fraction of Brass and rolling direction-rotated cube components. Partial recrystallization was observed. Deformed and recrystallized grains were separated using a partition scheme based on grain orientation spread and textures were analyzed for both the partition. Retention of deformation texture components in recrystallized grains suggests the mechanism of recrystallization as continuous recrystallization. Shear deformation plays an important role in grain refinement through continuous recrystallization. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructural changes of Ni-rich NiTi shape memory alloy during thermal and thermo-mechanical cycling have been investigated using Electron Back Scattered Diffraction. A strong dependence of the orientation of the prior austenite grain on the misorientation development has been observed during thermal cycling and thermo-mechanical cycling. This effect is more pronounced at the grain boundaries compared to grain interior. At a larger applied strain, the volume fraction of stabilized martensite phase increases with increase in the number of cycling. Deformation within the martensite leads to stabilization of martensitic phase even at temperatures slightly above the austenite finish temperature. Modulus variation with respect to temperature has been explained on the basis of martensitic transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the method of characteristics, the effect of footing-soil interface friction angle (delta) on the bearing capacity factor N-gamma was computed for a strip footing. The analysis was performed by employing a curved trapped wedge under the footing base; this wedge joins the footing base at a distance B-t from the footing edge. For a given footing width (B), the value of B-t increases continuously with a decrease in delta. For delta = 0, no trapped wedge exists below the footing base, that is, B-t/B = 0.5. On the contrary, with delta = phi, the point of emergence of the trapped wedge approaches toward the footing edge with an increase in phi. The magnitude of N-gamma increases substantially with an increase in delta/phi. The maximum depth of the plastic zone becomes higher for greater values of delta/phi. The results from the present analysis were found to compare well with those reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, ion nitriding of Maraging steel (250 grade) has been carried out at three different temperatures i.e., at 435 degrees C, 450 degrees C and 465 degrees C for 10 h duration in order to achieve good wear resistance along with high strength required for the slat track component of aircraft. The microstructure of the base material and the nitrided layer was examined by optical and scanning electron microscope, and various phases present were determined by X-ray diffraction. Various properties, such as, hardness, case depth, tensile, impact, fatigue properties and corrosion resistance were investigated for both un-nitrided and ion-nitrided materials. It is observed that the microstructure of the core material remains unaltered and Fe4N is formed in the hardened surface layer after ion nitriding at all the three temperatures employed. Surface hardness increases substantially after ion nitriding. Surface hardness remains almost the same but case depth increases with the increase in ion nitriding temperature due to greater diffusivity at higher temperatures. Tensile strength, fatigue strength and corrosion resistance are improved but ductility and energy absorbed in impact test decrease on ion nitriding. These results are explained on the basis of microstructural observations. The properties obtained after ion nitriding at 450 degrees C for 10 h are found to be optimum when compared to the other two ion nitriding temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO3, NO3 and Mg do not change much from coast to inland while, SO4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent (R-2 similar to 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of similar to 5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small additions of B to Titanium alloys refine the as-cast microstructure significantly and hence improve their mechanical performance. In this work, tensile, fracture and fatigue properties of the as-cast and HIPed Ti-6Al-4V alloy with hypoeutectic wt.% of B additions have been examined, with particular emphasis on identifying the microstructural length scale that controls the mechanical properties of these alloys.