15 resultados para Microbiological contamination
em Indian Institute of Science - Bangalore - Índia
Resumo:
A macrocyclic hydrazone Schiff base was synthesized by reacting 1,4-dicarbonyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol and a series of metal complexes with this new Schiff base were synthesized by reaction with Co(II), Ni(II) and Cu(II) metal salts. The Schiff base and its complexes have been characterized by elemental analyses, IR, H-1 NMR, UV-vis, FAB mass, ESR spectra, fluorescence, thermal, magnetic and molar conductance data. The analytical data reveal that the Co(II), Ni(II) and Cu(II) complexes possess 2:1 metal-ligand ratios. All the complexes are non-electrolytes in DMF and DMSO due to their low molar conductance values. Infrared spectral data suggest that the hydrazone Schiff base behaves as a hexadentate ligand with NON NON donor sequence towards the metal ions. The ESR spectral data shows that the metal-ligand bond has considerable covalent character. The electrochemical behavior of the copper(II) complex was investigated by cyclic voltammetry. The Schiff base and its complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Shigella dysentery, Micrococcus, Bacillus subtilis, Bacillus cereus and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Penicillium and Candida albicans) by MIC method. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Present in situ chemical treatment technologies for mitigation of petroleum hydrocarbon contamination are in the developmental stage or being tested. To devise efficient strategies for restricting the movement of petroleum hydrocarbon (PHC) molecules in the contaminated soil, it is proposed to utilize the sorption–interaction relationships between the petroleum contaminants and the soil substrate. The basic questions addressed in this paper are as follows (i) What are the prominent chemical constituents of the various petroleum fractions that interact with the soil substrate? (ii) What are the functional groups of a soil that interact with the contaminants? (iii) What are the bonding mechanisms possible between the soil functional groups and the PHC contaminants? (iv) What are the consequent changes brought about the soil physical properties on interaction with PHC's? (v) What are the factors influencing the interactions between PHC molecules and clay particles of the soil substrate? (vi) What is the possibility of improving the soil's attenuation ability for PHC's? The development of answers to the basic questions reveal that petroleum hydrocarbons comprise a mixture of nonpolar alkanes and aromatic and polycyclic hydrocarbons, that have limited solubility in water. The bonding mechanism between the nonpolar PHC's and the clay surface is by way of van der Waals attraction. The adsorption of the nonpolar hydrocarbons by the clay surface occurs only when their (i.e., the hydrocarbon molecules) solubility in water is exceeded and the hydrocarbons exist in the micellar form. Dilute solutions of hydrocarbons in water, i.e., concentrations of hydrocarbons at or below the solubility limit, have no effect on the hydraulic conductivity of clay soils. Permeation with pure hydrocarbons invariably influences the clay hydraulic conductivity. To improve the attenuation ability of soils towards PHC's, it is proposed to coat the soil surface with "ultra" heavy organic polymers. Adsorption of organic polymers by the clay surface may change the surface properties of the soil from highly hydrophilic (having affinity for water molecules) to organophilic (having affinity for organic molecules). The organic polymers attached to the clay surface are expected to attenuate the PHC molecules by van der Waals attraction, by hydrogen bonding, and also by adsorption into interlayer space in the case of soils containing swelling clays.
Resumo:
A microbial survey of Jamnagar bauxite mines in Gujarat, India, revealed the indigenous presence of a variety of autotrophic and heterotrophic bacteria and fungi associated with the ore body and water ponds in the vicinity. Among these, bacteria belonging to the genera Thiobacillus, Bacillus and Pseudomonas are implicated in the weathering of aluminosilicates; the precipitation of iron oxyhydroxides; the dissolution and conversion of alkaline metal species; and the formation of alumina, silica and calcite minerals. Fungi belonging to the genus Cladosporium can reduce ferric iron and dissolve alumina silicates. Biogenesis thus plays a significant role in bauxite mineralization. Various types of bacteria and fungi, such as Bacillus polymyxa, Bacillus coagulans and Aspergillus niger, were found to be efficient in significant calcium solubilization and partial iron removal from bauxite ore. Probable mechanisms in the biobeneficiation process are analyzed. Biobeneficiation is shown to be an effective technique for the removal of iron and calcium from bauxite ores for use in refractories and ceramics.
Resumo:
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(11), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type (M2LX2]center dot nH(2)O and Ni(2)LX(2)2H(2)O]center dot nH(2)O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(11) and Cu(11) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The GasBench II peripheral along with MAT 253 combination provides a more sensitive platform for the determination of water isotope ratios. Here, we examined the role of adsorbed moisture within the gas chromatography (GC) column of the GasBench II on measurement uncertainties. The uncertainty in O-18/O-16 ratio measurements is determined by several factors, including the presence of water in the GC. The contamination of GC with water originating from samples as water vapour over a longer timeframe is a critical factor in determining the reproducibility of O-18/O-16 ratios in water samples. The shift in isotope ratios observed in the experiment under dry and wet conditions correlates strongly with the retention time of analyte CO2, indicating the effect of accumulated moisture. Two possible methods to circumvent or minimise the effect of adsorbed water on isotope ratios are presented here. The proposed methodology includes either the regular baking of the GC column at a higher temperature (120 degrees C) after analysis of a batch of 32 sample entries or conducting the experiment at a low GC column temperature (22.5 degrees C). The effects of water contamination on long-term reproducibility of reference water, with and without baking protocol, have been described.
Resumo:
Geochemical studies are performed to examine the impact of leachate infiltration from on-site sewage disposal systems on the groundwater chemistry in Mulbagal town, Kolar District, Karnataka State, India. The leachate infiltration imposed nitrate concentrations ranging from 4 mg/L to 388 mg/L in the groundwater samples; it was observed that 79% of the samples exhibited nitrate concentrations in excess of drinking water permissible limit (45 mg/L). The average (of 43 measurements) E. coli levels in the groundwater samples corresponded to 189 MPN/100 mL and 55% of the samples tested exhibit pathogen contamination. Results also showed that the groundwater in the study area is characterized by acidic pH, large calcium + magnesium ion and Na/Cl ratios of < unity causing majority of the ground water samples to classify as Ca-Mg-Cl type and Na-Cl type. Saturation index (SI) computation using Visual MINTEQ program showed that the groundwater samples are under-saturated with respect to calcite. The theoretical SI values (of calcite) however suggested that the groundwater samples ought to be over-saturated with calcite. Under-saturation of the groundwater samples with calcite is attributed to increased dissolution of the mineral in the acidic environment of the groundwater.
Resumo:
Accidental spills and improper disposal of industrial effluent/sludge containing heavy metals onto the open land or into subsurface result in soil and water contamination. Detailed investigations are carried out to identify the source of contamination of heavy metals in an industrial suburb near Bangalore in India. Detailed investigation of ground water and subsurface soil analysis for various heavy metals has been carried out. Ground water samples were collected in the entire area through the cluster of borewells. Subsurface soil samples were collected from near borewells which were found to contain heavy metals. Water samples and soils samples (after acid digestion) were analysed as per APHO-standard method of analysis. While the results of Zn, Ni and Cd showed that they are within allowable limits in the soil, the ground water and soils in the site have concentration of Cr+6 far exceeding the allowable limits (up to 832 mg/kg). Considering the topography of the area, ground water movement and results of chromium concentration in the borewells and subsurface it was possible to identify the origin, zone of contamination and the migration path of Cr+6. The results indicated that the predominant mechanism of migration of Cr+6 is by diffusion.
Resumo:
Groundwater contamination is a serious concern in India. Major geogenic contaminants include fluoride, arsenic and iron, while common anthropogenic contaminants include nitrate, metals, organics and microbial contamination. Besides, known point and diffuse sources, groundwater c ontamination from inf iltration of pit to ilet leachate is an emerging concern. The study area of this paper is Kolar district in Karnataka that is hot spot of fluoride contamination. The absence of fluoride contamination in Mulbagal town and the alterations in groundwater chemistry from infiltration of pit toilet leachate motivated the author to examine the possible linkages between anthropogenic contamination and fluoride concentration in groundwater of Mulbagal town. Analysis of the groundwater chemistry revealed that the groundwater in Mulbagal town is under saturated with respect to calcite that suppresses the dissolution of fluorite and the fluoride concentration in the groundwater. The slightly acidic pH of the groundwater is considered responsible to facilitate calcite dissolution under saturation.
Resumo:
The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p <= 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51 % (n=793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46 % (n=273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85 % (n=107), 94.49 % (n=103), and 90.22 % (n=157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of blaTEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India.
Resumo:
Nearly 50% of India's population depends on variants of pit-toilet systems for human waste disposal. Nitrate contamination of groundwater by pit-toilet leachate is a major environmental concern in the country as it sources a major proportion (50-80%) of potable water from aquifers. Therefore, minimizing nitrate contamination of groundwater due to leachate infiltration from pit-toilet systems is essential. Batch and column experiments demonstrated the capability of bentonite-enhanced sand (BES) specimens to reduce nitrate concentrations in synthetic solutions (initial NO3-N concentration = 22.7 mg/L, C/N = 3) by about 85-90% in 10 to 24 hour by a heterotrophic denitrification process. Based on the laboratory results, it is recommended that use of a BES-permeable reactive barrier layer at the base of pit-toilets will facilitate heterotrophic denitrification and mitigate nitrate contamination of the underlying aquifer.
Resumo:
Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems. (C) 2015 AIP Publishing LLC.