3 resultados para Methacrylates

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photopolymerization of methyl,ethyl,butyl, and hexyl methacrylates in solution was studied. The effect of initial initiator and monomer concentrations on the time evolution of polymer concentration (M) over bar (n) and PDI was examined. The reversible chain addition and beta-scission, and primary radical termination steps were included in the mechanism along with the classical steps. The rate equations were derived using continuous distribution kinetics and solved numerically to fit the experimental data. The regressed rate coefficients compared well with the literature data. The model predicted the instantaneous increase in (M) over bar (n) and PDI to steady state values. The rate coefficients exhibited a linear increase with the size of alkyl chain of the alkyl methacrylates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miscibilities of some poly[aromatic (meth)acrylatels namely, poly(pheny1 acrylate) (PPA), poly(pheny1 methacrylate) (PPMA), poly(benzy1 acrylate) (PBA), and poly(benzy1 methacrylate) (PBMAY polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styreneacrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (B,j.’sw) ere calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBW SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miscibilities of some poly[aromatic (meth)crylate]s namely, poly(phenyl acrylate) (PPA, poly(phenyl methacrylate) (PPMA), poly(benzyl acrylate) (PBA), and poly(benzyl methacrylate) (PBMA)/polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styrene-acrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (Bij's) were calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBMA/SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.