83 resultados para Mesoporous Zeolite
em Indian Institute of Science - Bangalore - Índia
Resumo:
A Monte Carlo study along with experimental uptake measurements of 1,2,3-trimethyl benzene, 1,2,4-trimethyl benzene and 1,3,5-trimethyl benzene (TMB) in beta zeolite is reported. The TraPPE potential has been employed for hydrocarbon interaction and harmonic potential of Demontis for modeling framework of the zeolite. Structure, energetics and dynamics of TMB in zeolite beta from Monte Carlo runs reveal interesting information about the diameter, properties of these isomers on confinement. Of the three isomers, 135TMB is supposed to have the largest diameter. It is seen TraPPE with Demontis potential predicts a restricted motion of 135TMB in the channels of zeolite beta.Experimentally, 135TMB has the highest transport diffusivity whereas MID results suggest this has the lowest self diffusivity. (C) 2009 Elsevier Inc. Ail rights reserved.
Resumo:
The chain length of the surfactant and the solvent composition are two of the factors that determine whether the lamellar or the hexagonal form of mesoporous SiO2 (or ZrO2) is formed by the neutral amine route; a lamellar-hexagonal transformation occurs on removal of the amine from the former.
Resumo:
The cobalt(II) tris(bipyridyl) complex ion encapsulated in zeolite-Y supercages exhibits a thermally driven interconversion between a low-spin and a high-spin state-a phenomenon not observed for this ion either in solid state or in solution. From a comparative study of the magnetism and optical spectroscopy of the encapsulated and unencapsulated complex ion, supported by molecular modeling, such spin behavior is shown to be intramolecular in origin. In the unencapsulated or free state, the [Co(bipy)(3)](2+) ion exhibits a marked trigonal prismatic distortion, but on encapsulation, the topology of the supercage forces it to adopt a near-octahedral geometry. An analysis using the angular overlap ligand field model with spectroscopically derived parameters shows that the geometry does indeed give rise to a low-spin ground state, and suggests a possible scenario for the spin state interconversion.
Resumo:
Synthesis of mesoporous zirconium phosphate (MZP) by co-assembly of a tri-block copolymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide and phosphorous trichloride as inorganic precursors is reported. MZP with a specific surface area of 84 m(2) g(-1) average pore diameter of about 17 nm and pore volume of 0.35 cm(3) g(-1) has been prepared, and characterised by X-ray diffraction (XRD) and transmission electron microscopy. Nafion-MZP composite membrane is obtained by employing MZP as a surface-functionalised solid-super-acid-proton-conducting medium as well as all inorganic filler with high affinity to absorb water and fast proton-transport across the electrolyte membrane even under low relative humidity (RH) conditions. The composite membranes have been evaluated in H-2/O-2 polymer electrolyte fuel cells (PEFCs) at varying RH values between 18 and 100%; a peak power density of 355 mW cm(-2) at a load current density of 1,100 mA cm(-2) is achieved with the PEFC employing Nafion-MZP composite membrane while operating at optimum temperature (70 degrees C) under 18% RH and ambient pressure. On operating the PEFC employing Nafion-MZP membrane electrolyte with hydrogen and air feeds at ambient pressure and a RH value of 18%, a peak power density of 285 mW cm(-2) at the optimum temperature (60 degrees C) is achieved. In contrast, operating under identical conditions, a peak power density of only similar to 170 mW cm(-2) is achieved with the PEFC employing Nafion-1135 membrane electrolyte.
Resumo:
The crucial role of the drug carrier surface chemical moeities on the uptake and in vitro release of drug is discussed here in a systematic manner. Mesoporous alumina with a wide pore size distribution (2-7 nm) functionalized with various hydrophilic and hydrophobic surface chemical groups was employed as the carrier for delivery of the model drug ibuprofen. Surface functionalization with hydrophobic groups resulted in low degree of drug loading (approximately 20%) and fast rate of release (85% over a period of 5 h) whereas hydrophilic groups resulted in a significantly higher drug payloads (21%-45%) and slower rate of release (12%-40% over a period of 5 h). Depending on the chemical moiety, the diffusion controlled (proportional to time(-0.5)) drug release was additionally observed to be dependent on the mode of arrangement of the functional groups on the alumina surface as well as on the pore characteristics of the matrix. For all mesoporous alumina systems the drug dosages were far lower than the maximum recommended therapeutic dosages (MRTD) for oral delivery. We envisage that the present study would aid in the design of delivery systems capable of sustained release of multiple drugs.
Resumo:
Molecular dynamics simulations are reported on the structure and dynamics of n-decane and 3-methylpentane in zeolite NaY. We have calculated several properties such as the center of mass-center of mass rdf, the end-end distance distribution, bond angle distribution and dihedral angle distribution. We have also analysed trajectory to obtain diffusivity and velocity autocorrelation function (VACF). Surprisingly, the diffusivity of 3-methylpentane which is having larger cross-section perpendicular to the long molecular axis is higher than n-decane at 300 K. Activation energies have been obtained from simulations performed at 200 K, 300 K, 350 K, 400 K and 450 K in the NVE ensemble. These results can be understood in terms of the previously known levitation effect. Arrhenious plot has higher value of slope for n-decane (5 center dot 9 kJ/mol) than 3-methylpentane (3 center dot 7 kJ/mol) in agreement with the prediction of levitation effect.
Resumo:
Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.
Resumo:
The feasibility of utilizing mesoporous matrices of alumina and silica for the inhibition of enzymatic activity is presented here. These studies were performed on a protein tyrosine phosphatase by the name chick retinal tyrosine phosphotase-2 (CRYP-2), a protein that is identical in sequence to the human glomerular epithelial protein-1 and involved in hepatic carcinoma. The inhibition of CRYP-2 is of tremendous therapeutic importance. Inhibition of catalytic activity was examined using the Sustained delivery of p-nitrocatechol sulfate (pNCS) from bare and amine functionalized mesoporous silica (MCM-48) and mesoporous alumina (Al2O3). Among the various mesoporous matrices employed, amine functionalized MCM-48 exhibited the best release of pNCS and also inhibition of CRYP-2. The maximum speed of reaction nu(max) (= 160 +/- 10 mu mol/mnt/mg) and inhibition constant K-i (=85.0 +/- 5.0 mu mol) estimated using a competitive inhibition model were Found to be very similar to inhibition activities of protein tyrosine phosphatases using other methods.
Resumo:
Isoquinoline was prepared through the Beckmann rearrangement of cinnamaldoxime over different H-zeolites, K-10 montmorillonite clay, amorphous SiO2–Al2O3 and γ-alumina under well-optimized conditions of temperature, weight hourly space velocity and catalyst loading. Cinnamaldoxime under ambient reaction conditions over the catalysts underwent migration of the anti-styryl moiety to electron deficient nitrogen (Beckmann rearrangement) followed by an intramolecular cyclization to yield isoquinoline. Cinnamo-nitrile (dehydration product) and cinnamaldehyde were formed as by-products. Isoquinoline formation was high on zeolite catalysts (ca. >86.5%) and mordenite (ca. 92.3%) was the most efficient in the series. Catalysts were susceptible for deactivation and the decrease in the percentage conversion of oxime with time is associated with a corresponding increase in the acid hydrolysis producing salicylaldehyde at later stages of the reaction. However, these catalysts retain activity considerably and can be recycled without loss of activity and change of product distribution.
Resumo:
We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime.Activation energy is in the order E-a(n-pentane)>E-a(isopentane)>E-a(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen thatD(n pentane)>D(isopentane)>D(neopentane) and E-a(n-pentane)< E-a(isopentane)< E-a(neopentane). Intermediate scattering function for small wavenumbers obtained from MD follows a single exponential decay for neopentane and isopentane. For n-pentane, a single exponential fit provides a poor fit especially at short times. Cage residence time is largest for n-pentane and lowest for neopentane. For neopentane, the width of the self-part of the dynamic structure factor shows a near monotonic decrease with wavenumber. For n-pentane a minimum is seen near k=0.5 A degrees(-1) suggesting a slowing down of motion around the 12-ring window, the bottleneck for diffusion. Finally, the result that the branched isomer has a higher diffusivity as compared with the linear analog is at variation from what is normally seen.
Resumo:
We report a general method for the synthesis of hollow structures of a variety of functional inorganics by partial sintering of mesoporous nanocrystal aggregates. The formation of a thin shell initiates the transport of mass from the interior leading to growth of the shell. The principles are general and the hollow structures thus produced are attractive for many applications including catalysis, drug delivery and biosensing.
Resumo:
The details of cage-to-cage migration have been obtained from an analysis of the molecular dynamics trajectory of a probe adsorbate. It is observed that particles utilize the region within a radius of 2 angstrom from the window center but with diffusion taking place predominantly at 1.6 angstrom from the window center and a potential energy of nearly -12 kJ/mol. A barrier of about 0.5 kJ/mol is observed for surface-mediated diffusion. Surprisingly, for diffusion without surface mediation for a particle going from one cage center to another, there is an attractive well near the window instead of a barrier. At low adsorbate concentrations and room temperature, the predominant mode for cage-to-cage migration is surface-mediated diffusion. The analysis suggests that particles slide along the surface of the inner walls of the alpha-cages during migration from one cage to another.
Resumo:
In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.
Resumo:
Molecular dynamics calculations are reported for Xe in sodium Y zeolite with varying strengths of sorbate-zeolite dispersion interaction. In the absence of any dispersion interaction between the sorbate and the zeolite, the presence of the zeolite has a purely geometrical role. Increase in the strength of the sorbate-zeolite interaction increases the monomer population and decreases the population of dimers and higher sized clusters. The lifetime of the monomers as well as dimers increases with the strength of the dispersion interaction. The observed variations in the lifetime and the population of the different sized clusters is explained in terms of the changes in the potential energy surface caused by the increase in the strength of the dispersion interaction.
Resumo:
Molecular dynamics simulations on Xe in NaY and Ar in NaCaA zeolite are reported. Rates of cage-to-cage crossovers in the two zeolites exhibit trends which are contrary to that expected from geometrical considerations. The results suggest the important role of the sorbate-zeolite interactions in determining the molecular sieve properties of zeolites for small sized sorbates. The results are explained in terms of the barrier height for cage-to-cage crossover in the two zeolites.