59 resultados para Mesh generation from image data
em Indian Institute of Science - Bangalore - Índia
Resumo:
We have benchmarked the maximum obtainable recognition accuracy on five publicly available standard word image data sets using semi-automated segmentation and a commercial OCR. These images have been cropped from camera captured scene images, born digital images (BDI) and street view images. Using the Matlab based tool developed by us, we have annotated at the pixel level more than 3600 word images from the five data sets. The word images binarized by the tool, as well as by our own midline analysis and propagation of segmentation (MAPS) algorithm are recognized using the trial version of Nuance Omnipage OCR and these two results are compared with the best reported in the literature. The benchmark word recognition rates obtained on ICDAR 2003, Sign evaluation, Street view, Born-digital and ICDAR 2011 data sets are 83.9%, 89.3%, 79.6%, 88.5% and 86.7%, respectively. The results obtained from MAPS binarized word images without the use of any lexicon are 64.5% and 71.7% for ICDAR 2003 and 2011 respectively, and these values are higher than the best reported values in the literature of 61.1% and 41.2%, respectively. MAPS results of 82.8% for BDI 2011 dataset matches the performance of the state of the art method based on power law transform.
Resumo:
A method for reconstruction of an object f(x) x=(x,y,z) from a limited set of cone-beam projection data has been developed. This method uses a modified form of convolution back-projection and projection onto convex sets (POCS) for handling the limited (or incomplete) data problem. In cone-beam tomography, one needs to have a complete geometry to completely reconstruct the original three-dimensional object. While complete geometries do exist, they are of little use in practical implementations. The most common trajectory used in practical scanners is circular, which is incomplete. It is, however, possible to recover some of the information of the original signal f(x) based on a priori knowledge of the nature of f(x). If this knowledge can be posed in a convex set framework, then POCS can be utilized. In this report, we utilize this a priori knowledge as convex set constraints to reconstruct f(x) using POCS. While we demonstrate the effectiveness of our algorithm for circular trajectories, it is essentially geometry independent and will be useful in any limited-view cone-beam reconstruction.
Resumo:
A series of bimetallic acetylacetonate (acac) complexes, AlxCr1-x(acac)(3), 0 <= x <= 1, have been synthesized for application as precursors for the CVD Of Substituted oxides, such as (AlxCr1-x)(2)O-3. Detailed thermal analysis has been carried out on these complexes, which are solids that begin subliming at low temperatures, followed by melting, and evaporation from the melt. By applying the Langmuir equation to differential thermogravimetry data, the vapour pressure of these complexes is estimated. From these vapour pressure data, the distinctly different enthalpies of sublimation and evaporation are calculated, using the Clausius-Clapeyron equation. Such a determination of both the enthalpies of sublimation and evaporation of complexes, which sublime and melt congruently, does not appear to have been reported in the literature to date.
Resumo:
In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738-1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (;.) of light ("small-particle limit"). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/lambda ratio. We have identified the "small-particle limit" in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/lambda ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Image Image was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the Image -position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.
Resumo:
A soluble fraction of Image catalyzed the hydroxylation of mandelic acid to Image -hydroxymandelic acid. The enzyme had a pH optimum of 5.4 and showed an absolute requirement for Fe2+, tetrahydropteridine, NADPH. Image -Hydroxymandelate, the product of the enzyme reaction was identified by paper chromatography, thin layer chromatography, UV and IR-spectra.
Resumo:
Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.
Resumo:
Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).
Resumo:
Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.
Resumo:
It is observed that the daily mean temperature of the soil is linear with depth and the variation of the temperature is sinusoidal with a period of a day. Based on these observations the one-dimensional heat conduction equation for the soil can be solved which gives the amplitude and phase variation of the temperature wave with depth. Given the temperature data at three levels below the surface, the amplitude and phase variation and hence the surface temperature variation over the day are estimated. The daily mean temperature of the surface is estimated from linear extrapolation of the daily means at the three levels below the surface. Estimated values of soil thermal diffusivity show a subtantial change after sudden and heavy rains.
Resumo:
Observations from moored buoys during spring of 1998-2000 suggest that the warming of the mixed layer (similar to20 m deep) of the north Indian Ocean warm pool is a response to net surface heat flux Q(net) (similar to100 W m(-2)) minus penetrative solar radiation Q(pen) (similar to45 W m(-2)). A residual cooling due to vertical mixing and advection is indirectly estimated to be about 25 W m(-2). The rate of warming due to typical values of Q(net) minus Q(pen) is not very sensitive to the depth of the mixed layer if it lies between 10 m and 30 m.
Resumo:
A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.
Resumo:
Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.