74 resultados para Medical schools expansion
em Indian Institute of Science - Bangalore - Índia
Resumo:
Empirical research available on technology transfer initiatives is either North American or European. Literature over the last two decades shows various research objectives such as identifying the variables to be measured and statistical methods to be used in the context of studying university based technology transfer initiatives. AUTM survey data from years 1996 to 2008 provides insightful patterns about the North American technology transfer initiatives, we use this data in our paper. This paper has three sections namely, a comparison of North American Universities with (n=1129) and without Medical Schools (n=786), an analysis of the top 75th percentile of these samples and a DEA analysis of these samples. We use 20 variables. Researchers have attempted to classify university based technology transfer initiative variables into multi-stages, namely, disclosures, patents and license agreements. Using the same approach, however with minor variations, three stages are defined in this paper. The first stage is to do with inputs from R&D expenditure and outputs namely, invention disclosures. The second stage is to do with invention disclosures being the input and patents issued being the output. The third stage is to do with patents issued as an input and technology transfers as outcomes.
Resumo:
High temperature expansion is an effective tool for studying second order phase transitions. With this in mind, we have looked at a high momentum expansion for homogeneous isotropic turbulence. Combining our results with those of the inertial range, we give another view of extended self-similarity (ESS).
Resumo:
This paper describes the design and implementation of ADAMIS (‘A database for medical information systems’). ADAMIS is a relational database management system for a general hospital environment. Apart from the usual database (DB) facilities of data definition and data manipulation, ADAMIS supports a query language called the ‘simplified medical query language’ (SMQL) which is completely end-user oriented and highly non-procedural. Other features of ADAMIS include provision of facilities for statistics collection and report generation. ADAMIS also provides adequate security and integrity features and has been designed mainly for use on interactive terminals.
Resumo:
Transmission loss of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber, i.e., the side wall or the face of the chamber, are analyzed here based on the Green's function of a rectangular cavity with homogeneous boundary conditions. The rectangular chamber Green's function is expressed in terms of a finite number of rigid rectangular cavity mode shapes. The inlet and outlet ports are modeled as uniform velocity pistons. If the size of the piston is small compared to wavelength, then the plane wave excitation is a valid assumption. The velocity potential inside the chamber is expressed by superimposing the velocity potentials of two different configurations. The first configuration is a piston source at the inlet port and a rigid termination at the outlet, and the second one is a piston at the outlet with a rigid termination at the inlet. Pressure inside the chamber is derived from velocity potentials using linear momentum equation. The average pressure acting on the pistons at the inlet and outlet locations is estimated by integrating the acoustic pressure over the piston area in the two constituent configurations. The transfer matrix is derived from the average pressure values and thence the transmission loss is calculated. The results are verified against those in the literature where use has been made of modal expansions and also numerical models (FEM fluid). The transfer matrix formulation for yielding wall rectangular chambers has been derived incorporating the structural–acoustic coupling. Parametric studies are conducted for different inlet and outlet configurations, and the various phenomena occurring in the TL curves that cannot be explained by the classical plane wave theory, are discussed.
Resumo:
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
Resumo:
analysis of a complex physical problem and the close agreement they achieved with observations. However, the following points need to be clarified. First of all the authors assume that during the initial phases of expansion, the Tayior's instability sets in due to the acceleraacceleration of lighter fluid against the more dense cold water.
Resumo:
Precise measurements of the ultrasonic velocities and thermal expansivities of amorphous Se80Te20 and Se90Te10 alloys are reported near the glass transition. The samples are produced by liquid quenching. The longitudinal and transverse velocities are measured at 10 MHz frequency using the McSkimin pulse superposition technique. The thermal expansivities,agr, are measured using a three-terminal capacitance bridge. Theagr-values show a sharp maximum near the glass transition temperature,T g. The ultrasonic velocities also show a large temperature derivative, dV/dT nearT g. The data are discussed in terms of existing theories of the glass transition. The continuous change inagr shows that the glass transition is not a first-order transition, as suggested by some theories. The samples are found to be deformed by small loads nearT g. The ultrasonic velocities and dV/dT have contributions arising from this deformation.
Resumo:
Precise measurements of the ultrasonic velocities and thermal expansivities of amorphous Se80Te20 and Se90Te10 alloys are reported near the glass transition. The samples are produced by liquid quenching. The longitudinal and transverse velocities are measured at 10 MHz frequency using the McSkimin pulse superposition technique. The thermal expansivities,agr, are measured using a three-terminal capacitance bridge. Theagr-values show a sharp maximum near the glass transition temperature,T g. The ultrasonic velocities also show a large temperature derivative, dV/dT nearT g. The data are discussed in terms of existing theories of the glass transition. The continuous change inagr shows that the glass transition is not a first-order transition, as suggested by some theories. The samples are found to be deformed by small loads nearT g. The ultrasonic velocities and dV/dT have contributions arising from this deformation.
Resumo:
Single crystal macroscopic thermal expansion coefficient measurements have been made on uniaxial lithium potassium sulphate crystal both along and normal to the six fold axis, employing Fizeau’s interferometer method. Measurements were made in the range of −120°C to 500°C. The results show that lithium potassium sulphate exhibits two major anomalies in its expansion coefficients around −95°C and 422°C respectively, the one at −95°C has been observed for the first time. The nature of dimensional changes of the crystal at the upper and lower transition points are opposite in nature. The crystal shows considerable lattice anisotropy. Megaw’s tilt concept has been invoked to explain the relative magnitudes of expansion coefficients alonga andc directions. Structural features responsible for the absence of ferroelectricity in this crystal have been pointed out.
Resumo:
Mental retardation due to fragile X syndrome is one of the genetic disorders caused by tripler repeat expansion, CGG repeat involved in this disease is known to exhibit polymorphism even among normal individuals. Here we describe the development of suitable probes for detection of polymorphism in CGG repeat at FMR1 locus as well as the diagnosis of fragile X syndrome. Using these methods polymorphism at the FMR1 locus has been examined in 161 individuals. Ninety eight patients with unclassified mental retardation were examined, of whom 7 were found to have the expanded (CGG) allele at the FMR1 locus, The hybridization pattern for two patients has been presented as representative data.
Resumo:
In this paper, we consider a more realistic model of a spherical blast wave of moderate strength. An arbitrary number of terms for the series solution in each of the regions behind the main shock - the expansion region, the nearly uniform region outside the main expansion and the region between the contact surface and the main shock, have been generated and matched across the boundaries. We then study the convergence of the solution by using Pade approximation. It constitutes a genuine analytic solution for a moderately strong explosion, which, however, does not involve a secondary shock. The pressure distribution behind the shock however shows some significant changes in the location of the tail of the rarefaction and the interface, in comparison to the planar problem. The theory developed for the spherical blasts is also extended to cylindrical blasts. The results are compared with the numerical solution.
Resumo:
We propose a self-regularized pseudo-time marching strategy for ill-posed, nonlinear inverse problems involving recovery of system parameters given partial and noisy measurements of system response. While various regularized Newton methods are popularly employed to solve these problems, resulting solutions are known to sensitively depend upon the noise intensity in the data and on regularization parameters, an optimal choice for which remains a tricky issue. Through limited numerical experiments on a couple of parameter re-construction problems, one involving the identification of a truss bridge and the other related to imaging soft-tissue organs for early detection of cancer, we demonstrate the superior features of the pseudo-time marching schemes.