2 resultados para Meat cuts.
em Indian Institute of Science - Bangalore - Índia
Resumo:
A cut (A, B) (where B = V - A) in a graph G = (V, E) is called internal if and only if there exists a vertex x in A that is not adjacent to any vertex in B and there exists a vertex y is an element of B such that it is not adjacent to any vertex in A. In this paper, we present a theorem regarding the arrangement of cliques in a chordal graph with respect to its internal cuts. Our main result is that given any internal cut (A, B) in a chordal graph G, there exists a clique with kappa(G) + vertices (where kappa(G) is the vertex connectivity of G) such that it is (approximately) bisected by the cut (A, B). In fact we give a stronger result: For any internal cut (A, B) of a chordal graph, and for each i, 0 <= i <= kappa(G) + 1 such that vertical bar K-i vertical bar = kappa(G) + 1, vertical bar A boolean AND K-i vertical bar = i and vertical bar B boolean AND K-i vertical bar = kappa(G) + 1 - i. An immediate corollary of the above result is that the number of edges in any internal cut (of a chordal graph) should be Omega(k(2)), where kappa(G) = k. Prompted by this observation, we investigate the size of internal cuts in terms of the vertex connectivity of the chordal graphs. As a corollary, we show that in chordal graphs, if the edge connectivity is strictly less than the minimum degree, then the size of the mincut is at least kappa(G)(kappa(G)+1)/2 where kappa(G) denotes the vertex connectivity. In contrast, in a general graph the size of the mincut can be equal to kappa(G). This result is tight.
Resumo:
This paper presents a GPU implementation of normalized cuts for road extraction problem using panchromatic satellite imagery. The roads have been extracted in three stages namely pre-processing, image segmentation and post-processing. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, vegetation,. and fallow regions). The road regions are then extracted using the normalized cuts algorithm. Normalized cuts algorithm is a graph-based partitioning `approach whose focus lies in extracting the global impression (perceptual grouping) of an image rather than local features. For the segmented image, post-processing is carried out using morphological operations - erosion and dilation. Finally, the road extracted image is overlaid on the original image. Here, a GPGPU (General Purpose Graphical Processing Unit) approach has been adopted to implement the same algorithm on the GPU for fast processing. A performance comparison of this proposed GPU implementation of normalized cuts algorithm with the earlier algorithm (CPU implementation) is presented. From the results, we conclude that the computational improvement in terms of time as the size of image increases for the proposed GPU implementation of normalized cuts. Also, a qualitative and quantitative assessment of the segmentation results has been projected.