12 resultados para Mathematics lessons
em Indian Institute of Science - Bangalore - Índia
Resumo:
The book of nature is written in the language of mathematics. This quotation, attributed to Galileo, seemed to hold to an unreasonable1 extent in the era of quantum mechanics.
Resumo:
As editors of the book Lilavati's Daughters: The Women Scientists of India, reviewed by Asha Gopinathan (Nature 460, 1082; 2009), we would like to elaborate on the background to its title. Lilavati was a mathematical treatise of the twelfth century, composed by the mathematician and astronomer Bhaskaracharya (1114–85) — also known as Bhaskara II — who was a teacher of repute and author of several other texts. The name Lilavati, which literally means 'playful', is a surprising title for an early scientific book. Some of the mathematical problems posed in the book are in verse form, and are addressed to a girl, the eponymous Lilavati. However, there is little real evidence concerning Lilavati's historicity. Tradition holds that she was Bhaskaracharya's daughter and that he wrote the treatise to console her after an accident that left her unable to marry. But this could be a later interpolation, as the idea was first mentioned in a Persian commentary. An alternative view has it that Lilavati was married at an inauspicious time and was widowed shortly afterwards. Other sources have implied that Lilavati was Bhaskaracharya's wife, or even one of his students — raising the possibility that women in parts of the Indian subcontinent could have participated in higher education as early as eight centuries ago. However, given that Bhaskara was a poet and pedagogue, it is also possible that he chose to address his mathematical problems to a doe-eyed girl simply as a whimsical and charming literary device.
Resumo:
One influential image that is popular among scientists is the view that mathematics is the language of nature. The present article discusses another possible way to approach the relation between mathematics and nature, which is by using the idea of information and the conceptual vocabulary of cryptography. This approach allows us to understand the possibility that secrets of nature need not be written in mathematics and yet mathematics is necessary as a cryptographic key to unlock these secrets. Various advantages of such a view are described in this article.
Resumo:
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-dynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number Pr-M and the magnetic Reynolds number Re-M. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (Pr-M(-1), Re-M) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.
Resumo:
We discuss the key issues in the deployment of sparse sensor networks. The network monitors several environment parameters and is deployed in a semi-arid region for the benefit of small and marginal farmers. We begin by discussing the problems of an existing unreliable 1 sq km sparse network deployed in a village. The proposed solutions are implemented in a new cluster. The new cluster is a reliable 5 sq km network. Our contributions are two fold. Firstly, we describe a. novel methodology to deploy a sparse reliable data gathering sensor network and evaluate the ``safe distance'' or ``reliable'' distance between nodes using propagation models. Secondly, we address the problem of transporting data from rural aggregation servers to urban data centres. This paper tracks our steps in deploying a sensor network in a village,in India, trying to provide better diagnosis for better crop management. Keywords - Rural, Agriculture, CTRS, Sparse.
Resumo:
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.
Resumo:
We argued in arXiv: 1408.0624 that the quartic scalar field in AdS has features that could be instructive for answering the gravitational stability question of AdS. Indeed, the conserved charges identified there have recently been observed in the full gravity theory as well. In this paper, we continue our investigation of the scalar field in AdS and provide evidence that in the Two-Time Formalism (TTF), even for initial conditions that are far from quasi-periodicity, the energy in the higher modes at late times is exponentially suppressed in the mode number. Based on this and some related observations, we argue that there is no thermalization in the scalar TTF model within time-scales that go as similar to 1/epsilon(2), where epsilon measures the initial amplitude (with only low-lying modes excited). It is tempting to speculate that the result holds also for AdS collapse. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.