213 resultados para Mathematical functions

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A careful comparison of the distribution in the (R, θ)-plane of all NH ... O hydrogen bonds with that for bonds between neutral NH and neutral C=O groups indicated that the latter has a larger mean R and a wider range of θ and that the distribution was also broader than for the average case. Therefore, the potential function developed earlier for an average NH ... O hydrogen bond was modified to suit the peptide case. A three-parameter expression of the form {Mathematical expression}, with △ = R - Rmin, was found to be satisfactory. By comparing the theoretically expected distribution in R and θ with observed data (although limited), the best values were found to be p1 = 25, p3 = - 2 and q1 = 1 × 10-3, with Rmin = 2·95 Å and Vmin = - 4·5 kcal/mole. The procedure for obtaining a smooth transition from Vhb to the non-bonded potential Vnb for large R and θ is described, along with a flow chart useful for programming the formulae. Calculated values of ΔH, the enthalpy of formation of the hydrogen bond, using this function are in reasonable agreement with observation. When the atoms involved in the hydrogen bond occur in a five-membered ring as in the sequence[Figure not available: see fulltext.] a different formula for the potential function is needed, which is of the form Vhb = Vmin +p1△2 +q1x2 where x = θ - 50° for θ ≥ 50°, with p1 = 15, q1 = 0·002, Rmin = 2· Å and Vmin = - 2·5 kcal/mole. © 1971 Indian Academy of Sciences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the Fekete-Szego problem with real parameter lambda for the class Co(alpha) of concave univalent functions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two‐point function we are able to identify the excited modes in the wave field. The relative simplicity of the higher order correlation functions emerge as a byproduct and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices and of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is proved that the Riesz means S(R)(delta)f, delta > 0, for the Hermite expansions on R(n), n greater-than-or-equal-to 2, satisfy the uniform estimates \\S(R)(delta)f\\p less-than-or-equal-to C \\f\\p for all radial functions if and only if p lies in the interval 2n/(n + 1 + 2delta) < p < 2n/(n - 1 - 2delta).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove a Wiener Tauberian theorem for the L-1 spherical functions on a semisimple Lie group of arbitrary real rank. We also establish a Schwartz-type theorem for complex groups. As a corollary we obtain a Wiener Tauberian type result for compactly supported distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper deals with the existence of a quadratic Lyapunov function V = x′P(t)x for an exponentially stable linear system with varying coefficients described by the vector differential equation S0305004100044777_inline1 The derivative dV/dt is allowed to be strictly semi-(F) and the locus dV/dt = 0 does not contain any arc of the system trajectory. It is then shown that the coefficient matrix A(t) of the exponentially stable sy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove that given a Hecke-Maass form f for SL(2, Z) and a sufficiently large prime q, there exists a primitive Dirichlet character chi of conductor q such that the L-values L(1/2, f circle times chi) and L(1/2, chi) do not vanish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In routine industrial design, fatigue life estimation is largely based on S-N curves and ad hoc cycle counting algorithms used with Miner's rule for predicting life under complex loading. However, there are well known deficiencies of the conventional approach. Of the many cumulative damage rules that have been proposed, Manson's Double Linear Damage Rule (DLDR) has been the most successful. Here we follow up, through comparisons with experimental data from many sources, on a new approach to empirical fatigue life estimation (A Constructive Empirical Theory for Metal Fatigue Under Block Cyclic Loading', Proceedings of the Royal Society A, in press). The basic modeling approach is first described: it depends on enforcing mathematical consistency between predictions of simple empirical models that include indeterminate functional forms, and published fatigue data from handbooks. This consistency is enforced through setting up and (with luck) solving a functional equation with three independent variables and six unknown functions. The model, after eliminating or identifying various parameters, retains three fitted parameters; for the experimental data available, one of these may be set to zero. On comparison against data from several different sources, with two fitted parameters, we find that our model works about as well as the DLDR and much better than Miner's rule. We finally discuss some ways in which the model might be used, beyond the scope of the DLDR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose three variants of the extended Kalman filter (EKF) especially suited for parameter estimations in mechanical oscillators under Gaussian white noises. These filters are based on three versions of explicit and derivative-free local linearizations (DLL) of the non-linear drift terms in the governing stochastic differential equations (SDE-s). Besides a basic linearization of the non-linear drift functions via one-term replacements, linearizations using replacements through explicit Euler and Newmark expansions are also attempted in order to ensure higher closeness of true solutions with the linearized ones. Thus, unlike the conventional EKF, the proposed filters do not need computing derivatives (tangent matrices) at any stage. The measurements are synthetically generated by corrupting with noise the numerical solutions of the SDE-s through implicit versions of these linearizations. In order to demonstrate the effectiveness and accuracy of the proposed methods vis-à-vis the conventional EKF, numerical illustrations are provided for a few single degree-of-freedom (DOF) oscillators and a three-DOF shear frame with constant parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A straightforward analysis involving Fourier cosine transforms and the theory of Fourier seies is presented for the approximate calculation of the hydrodynamic pressure exerted on the vertical upstream face of a dam due to constant earthquake ground acceleration. The analysis uses the “Parseval relation” on the Fourier coefficients of square integrable functions, and directly brings out the mathematical nature of the approximate theory involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following Ioffe's method of QCD sum rules the structure functions F2(x) for deep inelastic ep and en scattering are calculated. Valence u-quark and d-quark distributions are obtained in the range 0.1 less, approximate x <0.4 and compared with data. In the case of polarized targets the structure function g1(x) and the asymmetry Image Full-size image are calculated. The latter is in satisfactory agreement in sign and magnitude with experiments for x in the range 0.1< x < 0.4.