4 resultados para Massenspektrometrie, CE-ICP-MS, Actiniden
em Indian Institute of Science - Bangalore - Índia
Resumo:
Towards fundamental studies and potential applications, achieving precise control over the generation of defects in pure ZnO nanocrystals has been always intriguing. Herein, we explored the rote of spectator ions (Co2+ and Ni2+) in influencing the functional properties of ZnO nanocrystals. The crystalline quality, phase purity, and composition of as-prepared samples were thoroughly established by powder X-ray diffraction, electron microscopy (TEM and STEM), and by Raman and X-ray photoelectron spectroscopies (XPS). Despite the presence of Co2+ and Ni2+ ions in the reaction mixture, STEM-energy dispersive spectroscopy (EDS), XPS analysis, and inductively-coupled plasma mass spectrometry (ICP-MS) revealed that the ZnO nanocrystals formed are dopant-free. Even so, their luminescence and magnetic properties were substantially different from those of pure ZnO nanocrystals synthesized using a similar methodology. We attribute the origin of these properties to the defects associated with ZnO nanocrystals generated under different but optimized conditions.
Resumo:
Oxovanadium(IV) complexes, viz. VO(Fc-tpy)(Curc)](ClO4) (1), VO(Fc-tpy)(bDHC)](ClO4) (2), VO(Fc-tpy)(bDMC)](ClO4) (3) and VO(Ph-tpy)(Curc)](ClO4) (4), of 4'-ferrocenyl-2,2':6',2 `'-terpyridine (Fc-tpy) and 4'-phenyl-2,2':6',2 `'-terpyridine (Ph-tpy) and monoanionic curcumin (Curc), bis-dehydroxycurcmin (bDHC) and bis-demethoxycurcumin (bDMC) were prepared, characterized and their photo-induced DNA cleavage activity and photocytotoxicity in visible light studied. The ferrocenyl complexes 1-3 showed an intense metal-to-ligand charge transfer band near 585 nm in DMF and displayed Fc(+)/Fc and V(IV)/V(III) redox couples near 0.65 V and -1.05 V vs. SCE in DMF-0.1 M TBAP. The complexes as avid binders to calf thymus DNA showed significant photocleavage of plasmid DNA in red light of 647 nm forming (OH)-O-center dot radicals. The complexes showed photocytotoxicity in HeLa and Hep G2 cancer cells in visible light of 400-700 nm with low dark toxicity. ICP-MS and fluorescence microscopic studies exhibited significant cellular uptake of the complexes within 4 h of treatment with complexes. The treatment with complex 1 resulted in the formation of reactive oxygen species inside the HeLa cells which was evidenced from the DCFDA assay. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Oxovanadium(IV) complexes VO(Fc-tpy)(acac)](ClO4) (1), VO(Fc-tpy)(nap-acac)](ClO4) (2), VO(Fc-tpy)(py-acac)](ClO4) (3) and VO(Ph-tpy)(py-acac)](ClO4) (4) of 4'-ferroceny1-2,2':6',2 `'-terpyridine (Fc-tpy) and 4'-phenyl-2,2':6',2 `'-terpyridine (Ph-tpy) having monoanionic acetylacetonate (acac), naphthylacetylacetonate (nap-acac) or pyrenylacetylacetonate (py-acac) ligand were prepared, characterized and their photocytotoxicity in visible light studied. The ferrocenyl complexes 1-3 showed an intense charge transfer band near 585 nm in DMF and displayed Fc(+)/Fc and V(IV)/V(III) redox couples near 0.66 V and -0.95 V vs. SCE in DMF-0.1 M TBAP. The complexes as avid binders to calf thymus DNA showed significant photocleavage of plasmid DNA in green light (568 nm) forming center dot OH radicals. The complexes that are photocytotoxic in HeLa and MCF-7 cancer cells in visible light (400-700 nm) with low dark toxicity remain nontoxic in normal fibroblast 3T3 cells. ICP-MS and fluorescence microscopic studies show significant cellular uptake of the complexes. Photo-irradiation of the complexes causes apoptotic cell death by ROS as evidenced from the DCFDA assay. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
Extreme isotopic variations among extraterrestrial materials provide great insights into the origin and evolution of the Solar System. In this tutorial review, we summarize how the measurement of isotope ratios can expand our knowledge of the processes that took place before and during the formation of our Solar System and its subsequent early evolution. The continuous improvement of mass spectrometers with high precision and increased spatial resolution, including secondary ion mass spectrometry (SIMS), thermal ionization mass spectrometry (TIMS) and multi collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), along with the ever growing amounts of available extraterrestrial samples have significantly increased the temporal and spatial constraints on the sequence of events that took place since and before the formation of the first Solar System condensates (i.e., Ca-Al-rich inclusions). Grains sampling distinct stellar environments with a wide range of isotopic compositions were admixed to, but possibly not fully homogenized in, the Sun's parent molecular cloud or the nascent Solar System. Before, during and after accretion of the nebula, as well as the formation and subsequent evolution of planetesimals and planets, chemical and physical fractionation processes irrevocably changed the chemical and isotopic compositions of all Solar System bodies. Since the formation of the first Solar System minerals and rocks 4.568 Gyr ago, short-and long-lived radioactive decay and cosmic ray interaction also contributed to the modification of the isotopic framework of the Solar System, and permit to trace the formation and evolution of directly accessible and inferred planetary and stellar isotopic reservoirs.