68 resultados para Martensite morphology

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of self accomodation of the different mertensite variants controlling the morphologies of the Zr---2.5wt%Nb alloy martensite has been examined. Three distinct types of grouping of martensite variants have been found to be predominantly present. Crystallographic descriptions of these groups have been provided and the degrees of self accomodation for these have been estimated and compared with those corresponding to other possible variant groupings around the symmetry axes of the parent phase. The frequently observed 3-variant group, which shows an “indentation mark” morphology when viewed along left angle bracket111right-pointing angle bracketβ directions in the transmission electron microscope, has been seen to have the highest degree of self accomodation amongst the cases considered. Based on the observations made, a growth sequence leading to the formation of the final martensitic structure has been proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of the helical morphology in monolayers and bilayers of chiral amphiphilic assemblies is believed to be driven at least partly by the interactions at the chiral centers of the amphiphiles. However, a detailed microscopic understanding of these interactions and their relation with the helix formation is still not clear. In this article a study of the molecular origin of the chirality-driven helix formation is presented by calculating, for the first time, the effective pair potential between a pair of chiral molecules. This effective potential depends on the relative sizes of the groups attached to the two chiral centers, on the orientation of the amphiphile molecules, and also on the distance between them. We find that for the mirror-image isomers (in the racemic modification) the minimum energy conformation is a nearly parallel alignment of the molecules. On the other hand, the same for a pair of molecules of one kind of enantiomer favors a tilt angle between them, thus leading to the formation of a helical morphology of the aggregate. The tilt angle is determined by the size of the groups attached to the chiral centers of the pair of molecules considered and in many cases predicted it to be close to 45 degrees. The present study, therefore, provides a molecular origin of the intrinsic bending force, suggested by Helfrich (J. Chem. Phys. 1986, 85, 1085-1087), to be responsible for the formation of helical structure. This effective potential may explain many of the existing experimental results, such as the size and the concentration dependence of the formation of helical morphology. It is further found that the elastic forces can significantly modify the pitch predicted by the chiral interactions alone and that the modified real pitch is close to the experimentally observed value. The present study is expected to provide a starting point for future microscopic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack loading and crack extension in pseudoelastic binary NiTi shape memory alloy (SMA) miniature compact tension (CT) specimens with 50.7 at.% Ni (austenitic, pseudoelastic) was investigated using infrared (IR) thermography during in situ loading and unloading. IR thermographic measurements allow for the observation of heat effects associated with the stress-induced transformation of martensite from B2 to BIT during loading and the reverse transformation during unloading. The results are compared with optical images and discussed in terms of the crack growth mechanisms in pseudoelastic NiTi SMAs. Direct experimental evidence is presented which shows that crack growth occurs into a stress-induced martensitic microstructure, which immediately retransforms to austenite in the wake of the crack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure and microtexture evolution during static annealing of a hot-extruded AZ21 magnesium alloy was studied. Apart from fine recrystallized equiaxed grains and large elongated deformed grains, a new third kind of abnormal grains that are stacked one after the other in a row parallel to the extrusion direction were observed. The crystallographic misorientation inside these grains was similar to that of the fine recrystallized grains. The large elongated grains exhibited significant in-grain misorientation. A self-consistent mechanistic model was developed to describe the formation of these grain morphologies during dynamic recrystallization (DRX). The texture of pre-extruded material, although lost in DRX, leaves a unique signature which manifests itself in the form of these grain morphologies. The origin of abnormal stacked grains was associated with slow nucleation in pre-extruded grains of a certain orientation. Further annealing resulted in large secondary recrystallized grains with occasional extension twins. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

α-Manganese dioxide is synthesized in a microemulsion medium by a redox reaction between KMnO4 and MnSO4 in presence of sodium dodecyl sulphate as a surface active agent. The morphology of MnO2 resembles nanopetals, which are spread parallel to the field. The material is further characterized by powder X-ray diffraction, energy dispersive analysis of X-ray, and Brunauer–Emmett–Teller surface area. Supercapacitance property of α-MnO2 nanopetals is studied by cyclic voltammetry and galvanostatic charge–discharge cycling. High values of specific capacitance are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme UDP-galactose-4-epimerase (GAL10) catalyzes a key step in galactose metabolism converting UDP-galactose to UDPglucose which then can get metabolized through glycolysis and TCA cycle thus allowing the cell to use galactose as a carbon and energy source. As in many fungi, a functional homolog of GAL10 exists in Candida albicans. The domainal organization of the homologs from Saccharomyces cerevisiae and C albicans show high degree of homology having both mutarotase and an epimerase domain. The former is responsible for the conversion of beta-D-galactose to alpha-D-galactose and the hitter for epimerization of UDP-galactose to UDP-glucose. Absence of C albicans GAL10 (CaGAL10) affects cell-wall organization, oxidative stress response, biofilm formation and filamentation. Cagal10 mutant cells tend to flocculate extensively as compared to the wild-type cells. The excessive filamentation in this mutant is reflected in its irregular and wrinkled colony morphology. Cagal10 strain is more susceptible to oxidative stress when tested in presence of H2O2. While the S. cerevsiae GAL10 (ScGAL10), essential for survival in the presence of galactose, has not been reported to have defects in the absence of galactose, the C albicans homolog shows these phenotypes during growth in the absence of galactose. Thus a functional CaGal10 is required not only for galactose metabolism but also for normal hyphal morphogenesis, colony morphology, maintenance of cell-wall integrity and for resistance to oxidative stress even in the absence of galactose. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella typhimurium mutants affecting the plaque morphology of P22 and other phages have been isolated. Using one such bacterial mutant phage mutants making turbid plaques have been isolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of anomalous indentations, with two opposite faces describing a pin-cushion effect and the other two faces normal, in long elongated grains of an extruded Mg-2Al-1Zn alloy is reported. Subsurface microstructural observations combined with Schmid factor calculations suggest that extension twinning accompanied by basal slip are the reasons for these. Johnson's expanding cavity model is invoked for further substantiation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the vaporization and precipitation dynamics of a nanosilica encapsulated water droplet by levitating it acoustically and heating it with a CO2 laser. For all concentrations, we observe three phases: solvent evaporation, surface agglomeration, and precipitation leading to bowl or ring shaped structures. At higher concentrations, ring reorientation and rotation are seen consistently. The surface temperature from an infrared camera is seen to be dependent on the final geometrical shape of the droplet and its rotation induced by the acoustic field of the levitator. With nonuniform particle distribution, these structures can experience rupture which modifies the droplet rotational speed. (C) 2010 American Institute of Physics. doi:10.1063/1.3493178]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model incorporating the surface conductivity and morphology of the composite solid electrolytes is envisaged to explain their conduction behaviour. The conductivity data on LinX−50 m/o Al2O3 (X = F−, Cl−, Br−, CO32−, SO42−, PO43−) composites prepared by thermal decomposition of LinX·2nAl(OH)3·mH2O salts and Li2SO4−A (A=Al2O3, CeO2, Y2O3, Yb2O3, Zr2O3, ZrO2 and BaTiO3) composites prepared by mechanical mixing of the components are examined in the light of this model. It is surmised that the particle size of both the dispersoids and the hosts not only influence the ionic conductivity of the host matrix but also affect its bulk properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.