30 resultados para Market segmentation

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address risk minimizing option pricing in a semi-Markov modulated market where the floating interest rate depends on a finite state semi-Markov process. The growth rate and the volatility of the stock also depend on the semi-Markov process. Using the Föllmer–Schweizer decomposition we find the locally risk minimizing price for European options and the corresponding hedging strategy. We develop suitable numerical methods for computing option prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address a portfolio optimization problem in a semi-Markov modulated market. We study both the terminal expected utility optimization on finite time horizon and the risk-sensitive portfolio optimization on finite and infinite time horizon. We obtain optimal portfolios in relevant cases. A numerical procedure is also developed to compute the optimal expected terminal utility for finite horizon problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address asymptotic analysis of option pricing in a regime switching market where the risk free interest rate, growth rate and the volatility of the stocks depend on a finite state Markov chain. We study two variations of the chain namely, when the chain is moving very fast compared to the underlying asset price and when it is moving very slow. Using quadratic hedging and asymptotic expansion, we derive corrections on the locally risk minimizing option price.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This correspondence describes a method for automated segmentation of speech. The method proposed in this paper uses a specially designed filter-bank called Bach filter-bank which makes use of 'music' related perception criteria. The speech signal is treated as continuously time varying signal as against a short time stationary model. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. The Bach filters are seen to marginally outperform the other filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address risk minimizing option pricing in a regime switching market where the floating interest rate depends on a finite state Markov process. The growth rate and the volatility of the stock also depend on the Markov process. Using the minimal martingale measure, we show that the locally risk minimizing prices for certain exotic options satisfy a system of Black-Scholes partial differential equations with appropriate boundary conditions. We find the corresponding hedging strategies and the residual risk. We develop suitable numerical methods to compute option prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a novel temporal feature of a signal, namely extrema-based signal track length (ESTL) for the problem of speech segmentation. We show that ESTL measure is sensitive to both amplitude and frequency of the signal. The short-time ESTL (ST_ESTL) shows a promising way to capture the significant segments of speech signal, where the segments correspond to acoustic units of speech having distinct temporal waveforms. We compare ESTL based segmentation with ML and STM methods and find that it is as good as spectral feature based segmentation, but with lesser computational complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is formulated as a stochastic process whose invariant distribution is concentrated at points of the desired region. By choosing multiple seed points, different regions can be segmented. The algorithm is based on the theory of time-homogeneous Markov chains and has been largely motivated by the technique of simulated annealing. The method proposed here has been found to perform well on real-world clean as well as noisy images while being computationally far less expensive than stochastic optimisation techniques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of pricing defaultable bonds in a Markov modulated market. Using Merton's structural approach we show that various types of defaultable bonds are combination of European type contingent claims. Thus pricing a defaultable bond is tantamount to pricing a contingent claim in a Markov modulated market. Since the market is incomplete, we use the method of quadratic hedging and minimal martingale measure to derive locally risk minimizing derivative prices, hedging strategies and the corresponding residual risks. The price of defaultable bonds are obtained as solutions to a system of PDEs with weak coupling subject to appropriate terminal and boundary conditions. We solve the system of PDEs numerically and carry out a numerical investigation for the defaultable bond prices. We compare their credit spreads with some of the existing models. We observe higher spreads in the Markov modulated market. We show how business cycles can be easily incorporated in the proposed framework. We demonstrate the impact on spreads of the inclusion of rare states that attempt to capture a tight liquidity situation. These states are characterized by low risk-free interest rate, high payout rate and high volatility.