2 resultados para Marine heterotrophic bacteria

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A microbial survey of Jamnagar bauxite mines in Gujarat, India, revealed the indigenous presence of a variety of autotrophic and heterotrophic bacteria and fungi associated with the ore body and water ponds in the vicinity. Among these, bacteria belonging to the genera Thiobacillus, Bacillus and Pseudomonas are implicated in the weathering of aluminosilicates; the precipitation of iron oxyhydroxides; the dissolution and conversion of alkaline metal species; and the formation of alumina, silica and calcite minerals. Fungi belonging to the genus Cladosporium can reduce ferric iron and dissolve alumina silicates. Biogenesis thus plays a significant role in bauxite mineralization. Various types of bacteria and fungi, such as Bacillus polymyxa, Bacillus coagulans and Aspergillus niger, were found to be efficient in significant calcium solubilization and partial iron removal from bauxite ore. Probable mechanisms in the biobeneficiation process are analyzed. Biobeneficiation is shown to be an effective technique for the removal of iron and calcium from bauxite ores for use in refractories and ceramics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomineralization of manganese on titanium condenser material exposed to seawater has been illustrated. Biomineralization occurs when the fouling components, namely, the microbes, are able to oxidize minerals present in water and deposit them as insoluble oxides on biofilm surfaces. Extensive biofilm characterization studies Showed that an alarmingly large number of bacteria in these biofilms are capable of oxidizing manganese and are, thereby, capable of causing biomineralization on the condenser material exposed to seawater. This paper addresses studies on understanding the exact role of the microbes in bringing about oxidation of manganese. The kinetics of manganese oxidation by marine Gram-positive manganese oxidizing bacterium Bacillus spp. that was isolated front the titanium surface was studied in detail. Manganese oxidation in the presence of Bacillus cells, by cell free extract (CFE) and heat-treated cell free extract was also studied. The study confirmed that bacteria mediate manganese oxidation and lead to the formation of biogenic oxides of MnO2 eventually leading to biomineralization on titanium surface exposed to seawater.