4 resultados para Marine Nitrogen-fixation

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mulberry leaves were shown to harbour substantial populations of bacteria, streptomycetes, yeasts, and moulds. Azotobacter and Beijerinckia were observed to contribute to nearly 5 to 10 per cent of the bacterial population. When grown in water culture under sterile conditions, Azotobacter inoculation on the leaf or root surface was found to increase plant growth, dry wt, and nitrogen content of the mulberry. The beneficial effect of Azotobacter was largely influenced by the presence of a carbon source in the plant nutrient solution. The root inoculation in comparison to leaf application was found to confer greater benefits to the growing plant. The presence of carbohydrates and amino acids in the leaf leachates of mulberry was shown. The mutual beneficial nature of the association of the plant and Azotobacter has been brought to light.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation was conducted to study the levels of nitrogen fixation on the leaf or sheath surfaces of four cultivars of paddy plants by using acetylene reduction technique. Varying levels of positive nitrogenase activity were observed on all the leaf surfaces. Sheath of IET 1991 cultivar showed a higher rate of fixation than the leaf surface. All the nitrogen-fixing organisms on the leaf or sheath surfaces belonged to the genus Beijerinckia. There was no correlation between the bacterial density and the level of fixation. Scanning electron microscopic data revealed that the upper surface of IET 1991 leaf was highly silicified and the microflora was either scanty or nil while the lower surface appeared quite different and harboured more micro-organisms. Similarly, the inner surface of sheath was devoid of silicification and showed the presence of micro-organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation was conducted to study the levels of nitrogen fixation on the leaf or sheath surfaces of four cultivars of paddy plants by using acetylene reduction technique. Varying levels of positive nitrogenase activity were observed on all the leaf surfaces. Sheath of IET 1991 cultivar showed a higher rate of fixation than the leaf surface. All the nitrogen-fixing organisms on the leaf or sheath surfaces belonged to the genus Beijerinckia. There was no correlation between the bacterial density and the level of fixation. Scanning electron microscopic data revealed that the upper surface of IET 1991 leaf was highly silicified and the microflora was either scanty or nil while the lower surface appeared quite different and harboured more micro-organisms. Similarly, the inner surface of sheath was devoid of silicification and showed the presence of micro-organisms.