27 resultados para Manufacturing robotics
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we propose an approach, using Coloured Petri Nets (CPN) for modelling flexible manufacturing systems. We illustrate our methodology for a Flexible Manufacturing Cell (FMC) with three machines and three robots. We also consider the analysis of the FMC for deadlocks using the invariant analysis of CPNs.
Resumo:
Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.
Resumo:
Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.
Resumo:
A new shock wave generator has been designed, fabricated and tested for preservative impregnation studies into wood slats used for manufacturing pencils in the Shock Waves Laboratory, IISc, Bangalore. Series of experiments have been carried out in the laboratory to achieve satisfactory preservative impregnation into VATTA wood slats. The experiments have shown that it is indeed possible to impregnate preservatives into VATTA wood slats using shock waves and the depth of penetration and the retention of preservatives by wood slats is as good as the conventional methods. This method is expected to result in substantial reduction in the treatment process time compared to conventional methods that are currently being used by the pencil manufacturing industry.
Resumo:
This paper presents a glowworm swarm based algorithm that finds solutions to optimization of multiple optima continuous functions. The algorithm is a variant of a well known ant-colony optimization (ACO) technique, but with several significant modifications. Similar to how each moving region in the ACO technique is associated with a pheromone value, the agents in our algorithm carry a luminescence quantity along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luminescence and have a circular sensor range. The glowworms depend on a local-decision domain to compute their movements. Simulations demonstrate the efficacy of the proposed glowworm based algorithm in capturing multiple optima of a multimodal function. The above optimization scenario solves problems where a collection of autonomous robots is used to form a mobile sensor network. In particular, we address the problem of detecting multiple sources of a general nutrient profile that is distributed spatially on a two dimensional workspace using multiple robots.
Resumo:
This paper is concerned with grasping biological cells in aqueous medium with miniature grippers that can also help estimate forces using vision-based displacement measurement and computation. We present the design, fabrication, and testing of three single-piece, compliant miniature grippers with parallel and angular jaw motions. Two grippers were designed using experience and intuition, while the third one was designed using topology optimization with implicit manufacturing constraints. These grippers were fabricated using different manufacturing techniques using spring steel and polydimethylsiloxane ( PDMS). The grippers also serve the purpose of a force sensor. Toward this, we present a vision-based force-sensing technique by solving Cauchy's problem in elasticity using an improved algorithm. We validated this technique at the macroscale, where there was an independent method to estimate the force. In this study, the gripper was used to hold a yeast ball and a zebrafish egg cell of less than 1 mm in diameter. The forces involved were estimated to be about 30 and 10 mN for the yeast ball and the zebrafish egg cell, respectively.
Resumo:
In this paper we address a scheduling problem for minimising total weighted tardiness. The motivation for the paper comes from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real life scenarios like unequal release times, incompatible job families, non-identical job sizes and allowance for job splitting have been considered. A mathematical model taking into account dynamic starting conditions has been developed. Due to the NP-hard nature of the problem, a few heuristic algorithms have been proposed. The performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small size problem instances, and (b) in comparison with `estimated optimal solution' for large size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal solutions (that is, statistically estimated one) in very reasonable computational time.
Resumo:
Recently, Brownian networks have emerged as an effective stochastic model to approximate multiclass queueing networks with dynamic scheduling capability, under conditions of balanced heavy loading. This paper is a tutorial introduction to dynamic scheduling in manufacturing systems using Brownian networks. The article starts with motivational examples. It then provides a review of relevant weak convergence concepts, followed by a description of the limiting behaviour of queueing systems under heavy traffic. The Brownian approximation procedure is discussed in detail and generic case studies are provided to illustrate the procedure and demonstrate its effectiveness. This paper places emphasis only on the results and aspires to provide the reader with an up-to-date understanding of dynamic scheduling based on Brownian approximations.
Resumo:
We present a framework for performance evaluation of manufacturing systems subject to failure and repair. In particular, we determine the mean and variance of accumulated production over a specified time frame and show the usefulness of these results in system design and in evaluating operational policies for manufacturing systems. We extend this analysis for lead time as well. A detailed performability study is carried out for the generic model of a manufacturing system with centralized material handling. Several numerical results are presented, and the relevance of performability analysis in resolving system design issues is highlighted. Specific problems addressed include computing the distribution of total production over a shift period, determining the shift length necessary to deliver a given production target with a desired probability, and obtaining the distribution of Manufacturing Lead Time, all in the face of potential subsystem failures.
Resumo:
Mathematical modelling plays a vital role in the design, planning and operation of flexible manufacturing systems (FMSs). In this paper, attention is focused on stochastic modelling of FMSs using Markov chains, queueing networks, and stochastic Petri nets. We bring out the role of these modelling tools in FMS performance evaluation through several illustrative examples and provide a critical comparative evaluation. We also include a discussion on the modelling of deadlocks which constitute an important source of performance degradation in fully automated FMSs.
Resumo:
A structured systems methodology was developed to analyse the problems of production interruptions occurring at random intervals in continuous process type manufacturing systems. At a macro level the methodology focuses on identifying suitable investment policies to reduce interruptions of a total manufacturing system that is a combination of several process plants. An interruption-tree-based simulation model was developed for macroanalysis. At a micro level the methodology focuses on finding the effects of alternative configurations of individual process plants on the overall system performance. A Markov simulation model was developed for microlevel analysis. The methodology was tested with an industry-specific application.
Resumo:
The next generation manufacturing technologies will draw on new developments in geometric modelling. Based on a comprehensive analysis of the desiderata of next generation geometric modellers, we present a critical review of the major modelling paradigms, namely, CSG, B-Rep, non-manifold, and voxel models. We present arguments to support the view that voxel-based modellers have attributes that make it the representation scheme of choice in meeting the emerging requirements of geometric modelling.