214 resultados para Manganese Oxides

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron transport and magnetic properties of several compositions of the La1-xSx-zYzMnO3 system have been investigated in order to explore the effect of yttrium substitution on the magnetoresistance and related properties of these manganates. Yttrium substitution lowers the T-c and the insulator-metal transition temperature, while increasing the peak resistivity. A comparison of the properties of La1-xSrx-zYzMnO3 with the corresponding La1-xCax-zYzMnO3 compositions shows that the observed properties can be related to the average size of the A-site cations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams'' have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as functions of CVD parameters. For the process conduced in argon ambient, the analysis predicts the simultaneous deposition of MnO and elemental carbon in 1: 3 molar proportion, over a range of temperatures. The analysis predicts also that, if CVD is carried out in oxygen ambient, even a very low flow of oxygen leads to the complete absence of carbon in the film deposited oxygen, with greater oxygen flow resulting in the simultaneous deposition of two different manganese oxides under certain conditions. The results of thermodynamic modeling have been verified quantitatively for low-pressure CVD conducted in argon ambient. Indeed, the large excess of carbon in the deposit is found to constitute a MnO/C nanocomposite, the associated cauliflower-like morphology making it a promising candidate for electrode material in supercapacitors. CVD carried out in oxygen flow, under specific conditions, leads to the deposition of more than one manganese oxide, as expected from thermodynamic analysis ( and forming an oxide-oxide nanocomposite). These results together demonstrate that thermodynamic analysis of the MOCVD process can be employed to synthesize thin films in a predictive manner, thus avoiding the inefficient trial-and-error method usually associated with MOCVD process development. The prospect of developing thin films of novel compositions and characteristics in a predictive manner, through the appropriate choice of CVD precursors and process conditions, emerges from the present work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report Extended X-ray Absorption Fine Structure and anelastic spectroscopy measurements on on hole doped manganese oxides La1-xCaxMnO3 which present the colossal magnetoresistance effect. EXAFS measurements were realized both in the absence and presence of an applied magnetic field of 1.1 Tesla, in a wide temperature range (between 330 and 77 K) and at various dopings (x = 0.25 and x = 0.33). The magnetic field orders the magnetic moments so favouring the electron mobility and the reduction of Mn-O octahedra distortions. We observe the presence of four short and two long Mn-O distances (1.93 and 2.05 Angstrom respectively) above and also below the metal-insulator phase transition. The overall distortion decreases but does not completely disappear in the metallic phase suggesting the possible coexistence of metallic and insulating regions at low temperatures. The magnetic field reduces the lattice distortions showing evidence of a microscopic counterpart of the macroscopic colossal magnetoresistance. We also present preliminary anelastic relaxation spectra in a wide temperature range from 900 K to 1 K on a sample with x = 0.40, in order to study the structural phase transitions and the lattice dynamics. A double peak has been observed at the metal-insulator transition in the imaginary part of Young's modulus. This double peak indicates that the metal-insulator transition could be a more complex phenomenon than a simple second order phase transition. In particular the peak at lower temperatures can be connected with the possible presence of inhomogeneous phase structures. Another intense dissipation peak has been observed corresponding to the structural orthorhombic-trigonal transition around 750 K.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the structure and magnetic properties of the perovskite oxides of the formula La2Fe1-xMn2xCr1-xO6 (0 < x < 1.0). For 0 < x <= 0.5, the members adopt the orthorhombic (Pbnm) structure, where the transition metal atoms are disordered at the 4b sites and the MO6 (M = Fe, Mn, Cr) octahedra become increasingly distorted with increasing x. For 0.65 <= x < 1.0, the members adopt the rhombohedral (R-3c) structure that is similar to LaMnO3+delta (delta >= 0.1) where the MO6 octahedra are undistorted. While the magnetic properties of the latter series are largely similar to the parent LaMnO3+delta arising from the double-exchange (DE) between mixed valent Mn-III/Mn-IV, the magnetic properties of the orthorhombic members show a distinct (albeit weak) ferromagnetism (T-C similar to 200 K) that seems to arise from a Mn-III-mediated superexchange (SE) between Fe-III/Cr-III in the disordered perovskite structure containing Fe-III, Mn-III and Cr-III.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High temperature reaction calorimetry using molten lead berate as solvent has been used to study the thermochemistry of NdMnO3, YMnO3, La1-xSrxMnO3 (with 0 < x < 0.5), and Ln(0.5)Ca(0.5)MnO(3) (with Ln = La, Nd, Y), The enthalpies of formation of these multicomponent oxides from their binary constituents have been calculated from the measured enthalpy of drop solution, The energetic stability of the perovskite depends on the size of the A cation, The enthalpy of formation of YMnO3 (smallest A cation) is more endothermic than those of NdMnO3 and LaMnO3. The energetics of the perovskite also depends on the oxidation state of the B site's ions. In the La1-xSrxMnO3 system, the energetic stability of the structure increases with the Mn4+/Mn3+ ratio, The new values of the enthalpies of oxidations, with reliable standard entropies, were used to plot the phase stability diagram of the lanthanum-manganese-oxygen system in the temperature range 300-1100 K, The LaMnO3/MnO phase boundary evaluated in this study agrees with the one published by Atsumi et nl. calculated from thermogravimetric and conductivity measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomineralization of manganese on titanium condenser material exposed to seawater has been illustrated. Biomineralization occurs when the fouling components, namely, the microbes, are able to oxidize minerals present in water and deposit them as insoluble oxides on biofilm surfaces. Extensive biofilm characterization studies Showed that an alarmingly large number of bacteria in these biofilms are capable of oxidizing manganese and are, thereby, capable of causing biomineralization on the condenser material exposed to seawater. This paper addresses studies on understanding the exact role of the microbes in bringing about oxidation of manganese. The kinetics of manganese oxidation by marine Gram-positive manganese oxidizing bacterium Bacillus spp. that was isolated front the titanium surface was studied in detail. Manganese oxidation in the presence of Bacillus cells, by cell free extract (CFE) and heat-treated cell free extract was also studied. The study confirmed that bacteria mediate manganese oxidation and lead to the formation of biogenic oxides of MnO2 eventually leading to biomineralization on titanium surface exposed to seawater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through the application of negative reduction potential significant reduction of manganic and iron oxides in the ocean manganese nodules can be achieved, liberating the occluded copper, nickel and cobalt for easy dissolution in an acid medium. Electroleaching and electrobioleaching of ocean manganese nodules in the presence of Thiobacillus ferrooxidans and Thiobacillus thiooxidans at the above negative applied dc potentials resulted in significant dissolution of copper, nickel and cobalt in 1 M H2SO4. The role of galvanic interactions in the bioleaching of ocean manganese nodules in the presence of T thiooxidans is also discussed, (C) 2002 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental assessment of Li2MnO3 has been conducted, in conjunction with related Mn(IV) oxides, to investigate its red colour and photoluminescence. Optical absorption spectra revealed strong band gap absorption, with a sharp edge at similar to 610 nm and a transparent region between similar to 610 and similar to 650 nm, giving rise to the red colour of this compound. Octahedral Mn(IV) ligand field transitions have been observed in the excitation spectra of Li2MnO3, corresponding both to Mn(IV) at ideal sites and displaced in Li sites in the rock salt-based layered structure of Li2MnO3. Optical excitation at ligand field transition energies produces tunable emission in the red-yellow-green region, rendering Li2MnO3 a unique Mn(IV) oxide. The honeycomb-ordered LiMn6] units in its structure are probably the origin of both the absorption and the photoluminescent properties of Li2MnO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EPR spectra of microwave-prepared 70NaPO(3):30PbO glasses containing different weight percentages of manganese ions have been studied. The EPR spectra exhibit a well-resolved hyperfine pattern at g(eff) approximate to 2.0. Optical absorption, fluorescent emission and excitation spectra of the glasses have been examined. The absorption spectrum exhibits a peak near 500 nm and this has been attributed to the spin-allowed E-5(g) --> T-5(2g) transition of Mn3+ ions. The emission spectrum shows a band at 595 nm which has been assigned to the T-4(1g)(G) --> (6)A(1g)(S) spin-forbidden transition of Mn2+ ions in octahedral coordination. Concentration quenching of fluorescence was found to occur above 0.75 wt% of Mn2+ ions. The excitation spectra exhibit four bands characteristic of Mn2+ ions in octahedral coordination. From the observed band positions of the excitation spectra, the crystal field parameter D-q and the Racah interelectronic repulsion parameters, B and C have been calculated. A structural model is proposed based on the IR, Raman and MASNMR studies according to which Mn2+ ions are likely to occupy sites similar to Na+ ions in these glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition-metal oxides at the metal-insulator boundary, especially those belonging to the perovskite family, exhibit fascinating phenomena such as insulator-metal transitions controlled by composition, high-temperature superconductivity and giant magnetoresistance (GMR), Interestingly, many of these marginally metallic oxides obey the established criteria for metallicity and have a finite density of states at the Fermi;level. The perovskite manganates exhibiting GMR, on the other hand, are unusual in that they possess very high resistivities in the 'metallic' state and show no significant density of states at the Fermi level, Marginal metallicity in oxide systems is a problem of great complexity and contemporary interest and its understanding is of crucial significance to the diverse phenomena exhibited by these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn1-xZnxFe2O4 (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn1-xZnxFe2O4. The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrothermal reaction of Mn(OAc)2·4H2O, trimesic acid, imidazole, KOH and water at 75 °C for 24 h gave rise to a 2-D compound, [HImd][Mn(BTC)(H2O)] (Imd = imidazole; BTC = trimesate), with protonated imidazole molecules occupying the inter-lamellar space, and the structure resembles the classic inorganic compound, the sodium intercalated TiS2 (Na2TiS2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.