22 resultados para Management of water and soil
em Indian Institute of Science - Bangalore - Índia
Resumo:
Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A distinctive feature of the Nhecolandia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater lakes. Saline lakes used to be attributed to a past and phase during the Pleistocene. However, recent studies have shown that saline and fresh water lakes are linked by a continuous water table, indicating that saline water could come from a contemporary concentration process. This concentration process could also be responsible for the large chemical variability of the waters observed in the area. A regional water sampling has been conducted in surface and sub-surface water and the water table, and the results of the geochemical and statistical analysis are presented. Based on sodium contents, the concentration shows a 1: 4443 ratio. All the samples belong to the same chemical family and evolve in a sodic alkaline manner. Calcite or magnesian calcite precipitates very early in the process of concentration, probably followed by the precipitation of magnesian silicates. The most concentrated solutions remain under-saturated with respect to the sodium carbonate salt, even if this equilibrium is likely reached around the saline lakes. Apparently, significant amounts of sulfate and chloride are lost simultaneously from the solutions, and this cannot be explained solely by evaporative concentration. This could be attributed to the sorption on reduced minerals in a green sub-surface horizon in the "cordilhieira" areas. In the saline lakes, low potassium, phosphate, magnesium, and sulfate are attributed to algal blooms. Under the influence of evaporation, the concentration of solutions and associated chemical precipitations are identified as the main factors responsible for the geochemical variability in this environment (about 92 % of the variance). Therefore, the saline lakes of Nhecolandia have to be managed as landscape units in equilibrium with the present water flows and not inherited from a past and phase. In order to elaborate hydrochemical tracers for a quantitative estimation of water flows, three points have to be investigated more precisely: (1) the quantification of magnesium involved in the Mg-calcite precipitation; (2) the identification of the precise stoichiometry of the Mg-silicate; and (3) the verification of the loss of chloride and sulfate by sorption onto labile iron minerals.
Resumo:
1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.
Resumo:
This book introduces the major agricultural activities in India and their impact on soil and groundwater. It lists the basic aspects of agricultural activities and introduces soil properties, classification and processes, and groundwater characteristics, movement, and recharge aspects. It further discusses soil and groundwater pollution from various sources, impacts of irrigation, drainage, fertilizer, and pesticide. Finally, the book dwells upon conservation and management of groundwater and soil.
Resumo:
It is a well-known fact that most of the developing countries have intermittent water supply and the quantity of water supplied from the source is also not distributed equitably among the consumers. Aged pipelines, pump failures, and improper management of water resources are some of the main reasons for it. This study presents the application of a nonlinear control technique to overcome this problem in different zones in the city of Bangalore. The water is pumped to the city from a large distance of approximately 100km over a very high elevation of approximately 400m. The city has large undulating terrain among different zones, which leads to unequal distribution of water. The Bangalore, inflow water-distribution system (WDS) has been modeled. A dynamic inversion (DI) nonlinear controller with proportional integral derivative (PID) features (DI-PID) is used for valve throttling to achieve the target flows to different zones of the city. This novel approach of equitable water distribution using DI-PID controllers that can be used as a decision support system is discussed in this paper.
Resumo:
The often discussed role of surface hydroxylation of TiO2 particles as an essential characterestics for their photocatalytic activity can be verified by preparing TiO2 powders by hydrothermal method since hydroxylated surface layers will be better retained on these particles formed in superheated water. Thus, fine powders of TiO2 (rutile) with high degree of crystallinity are formed from titanium oxychloride in the mixed solvent of water and 2-propanol at 160–230°C and 20–120 atm. The anatase phase is produced from the same medium when sulfate ion impurity is present, with Image . TiO2 powders are washed free of anions and 2-propanol by ultrafiltration and are Pt mounted by a photochemical method. Aqueous suspensions of both forms of TiO2 neither as such nor after Pt-loading, do not produce H2 on band gap illumination whereas, H2 is generated in presence of hole scavengers such as EDTA, TEOA, sulfite or hypophosphite. The effects of hole scavenger concentration, Pt : TiO2 ratio, particulate suspension density and the nature of hole scavengers on H2 production are presented. Platinised rutile powders are equally active as anatase in sacrificial systems.
Resumo:
Nanotechnology is a new technology which is generating a lot of interest among academicians, practitioners and scientists. Critical research is being carried out in this area all over the world.Governments are creating policy initiatives to promote developments it the nanoscale science and technology developments. Private investment is also seeing a rising trend. Large number of academic institutions and national laboratories has set up research centers that are workingon the multiple applications of nanotechnology. Wide ranges of applications are claimed for nanotechnology. This consists of materials, chemicals, textiles, semiconductors, to wonder drug delivery systems and diagnostics. Nanotechnology is considered to be a next big wave of technology after information technology and biotechnology. In fact, nanotechnology holds the promise of advances that exceed those achieved in recent decades in computers and biotechnology. Much interest in nanotechnology also could be because of the fact that enormous monetary benefits are expected from nanotechnology based products. According to NSF, revenues from nanotechnology could touch $ 1 trillion by 2015. However much of the benefits are projected ones. Realizing claimed benefits require successful development of nanoscience andv nanotechnology research efforts. That is the journey of invention to innovation has to be completed. For this to happen the technology has to flow from laboratory to market. Nanoscience and nanotechnology research efforts have to come out in the form of new products, new processes, and new platforms.India has also started its Nanoscience and Nanotechnology development program in under its 10(th) Five Year Plan and funds worth Rs. One billion have been allocated for Nanoscience and Nanotechnology Research and Development. The aim of the paper is to assess Nanoscience and Nanotechnology initiatives in India. We propose a conceptual model derived from theresource based view of the innovation. We have developed a structured questionnaire to measure the constructs in the conceptual model. Responses have been collected from 115 scientists and engineers working in the field of Nanoscience and Nanotechnology. The responses have been analyzed further by using Principal Component Analysis, Cluster Analysis and Regression Analysis.
Resumo:
We use atomistic molecular dynamics (MD) simulations to study the diffusion of water molecules confined inside narrow (6,6) carbon nanorings. The water molecules form two oppositely polarized chains. It is shown that the effective interaction between these two chains is repulsive in nature. The computed mean-squared displacement (MSD) clearly shows a scaling with time
Resumo:
In this paper, we develop a consolidated Supply-Demand framework of the Venture Capital (VC) ecosystem for India. Further, we empirically analyze the supply side of this ecosystem to ascertain the influence of systematic (macro) and non-systematic (micro) factors on VC fundraising. At the macro level, our results indicate that relatively strong fundamentals of the Indian economy in the past decade as compared with the severe recessionary tendencies in the developed economies have been critical in determining the aggregate volume of VC fundraising. Among the micro factors, past performance and reputation of the individual fund managers have been instrumental in determining their fund raising potential.
Resumo:
Due to increasing trend of intensive rice cultivation in a coastal river basin, crop planning and groundwater management are imperative for the sustainable agriculture. For effective management, two models have been developed viz. groundwater balance model and optimum cropping and groundwater management model to determine optimum cropping pattern and groundwater allocation from private and government tubewells according to different soil types (saline and non-saline), type of agriculture (rainfed and irrigated) and seasons (monsoon and winter). A groundwater balance model has been developed considering mass balance approach. The components of the groundwater balance considered are recharge from rainfall, irrigated rice and non-rice fields, base flow from rivers and seepage flow from surface drains. In the second phase, a linear programming optimization model is developed for optimal cropping and groundwater management for maximizing the economic returns. The models developed were applied to a portion of coastal river basin in Orissa State, India and optimal cropping pattern for various scenarios of river flow and groundwater availability was obtained.
Resumo:
A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.
Resumo:
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA)problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max-min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.