37 resultados para MOUSE EMBRYOS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Our current understanding of the evolution of the histone gene family suffers from a lack of information on plant histone genes1. With a view to gathering some much needed information on these genes, we studied a rice genomic clone in pBR322 carrying H2A, H2B and H4 histone genes on a DNA fragment2 of 6.64 kilobases (kb). A restriction map of the insert was constructed and the organization of the three genes on this insert was determined. H2A and H2B histone genes were located at one end of the insert and H4 gene at the other with a 3.1 kb spacer in between. This cluster of three histone genes was found to be transcribed in a bidirectional fashion with H2A and H2B genes being encoded by one strand and the H4 gene by the other. These results indicate that plant histone gene organization differs from that of the sea urchin, but shows many similarities to the systems in other animals.
Resumo:
Internal ribosome entry site (IRES)-mediated translation of input viral RNA is the initial required step for the replication of the positive-stranded genome of hepatitis C virus (HCV). We have shown previously the importance of the GCAC sequence near the initiator AUG within the stem and loop IV (SLIV) region in mediating ribosome assembly on HCV RNA. Here, we demonstrate selective inhibition of HCV-IRES-mediated translation using short hairpin (sh)RNA targeting the same site within the HCV IRES. sh-SLIV showed significant inhibition of viral RNA replication in a human hepatocellular carcinoma (Huh7) cell line harbouring a HCV monocistronic replicon. More importantly, co-transfection of infectious HCV-H77s RNA and sh-SLIV in Huh7.5 cells successfully demonstrated a significant decrease in viral RNA in HCV cell culture. Additionally, we report, for the first time, the targeted delivery of sh-SLIV RNA into mice liver using Sendai virosomes and demonstrate selective inhibition of HCV-IRES-mediated translation. Results provide the proof of concept that Sendai virosomes could be used for the efficient delivery of shRNAs into liver tissue to block HCV replication.
Resumo:
3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) is a porphyrinogenic agent and is a powerful inducer of δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, in mouse liver. However, DDC strikingly inhibits mitochondrial as well as microsomal haem synthesis by depressing the activity of ferrochelatase in vivo. The drug on repeated administration to female mice has been found to elicit hypertrophic effects in the liver microsomes initially, but the effects observed at later stages denote either hyperplasia or increase in polyploidal cells. The microsomal protein concentration shows a striking decrease with repeated doses of the drug. The rate of microsomal protein synthesis in vivo as well as in vitro shows an increase with two injections of DDC but decreases considerably with repeated administration of the drug. The activities of NADPH-cytochrome creductase and ribonuclease are not affected in the liver microsomes of drug-treated animals when expressed per mg of microsomal protein. DDC has also been found to cause degradation of microsomal haem, which is primarily responsible for the decrease in cytochrome P-450 content. The drug also leads to a decrease in mitochondrial cytochrome c levels due to inhibition of haem synthesis and also due to degradation of mitochondrial haem at later stages. The biochemical effects of the drug are compared and discussed with those reported for allylisopropylacetamide and phenobarbital.
Resumo:
GERMINATION transfers a metabolically inert embryo into an active state of growth and development. The presence of conserved mRNAs has been demonstrated in different species of eggs and seeds1–4. In rice embryos, germination was shown to be independent of the synthesis of RNA up to 18–24 h after the start of imbibition5, although RNA synthesis was detected as early as 9 h after the start of imbibition. In this report, the sequence of the transcriptional events taking place during the early phase of the germination of rice embryos are presented.
Resumo:
The in vitro development of hamster preimplantation embryos is supported by non-glucose energy substrates. To investigate the importance of embryonic metabolism, influence of succinate and malate on the development of hamster 8-cell embryos to blastocysts was examined using a chemically defined protein-free modified hamster embryo culture medium-2 (HECM-2m). There was a dose-dependent influence of succinate on blastocyst development; 0.5 mM succinate was optimal (85.1% ± 3.9 vs. 54.5% ± 3.5). In succinate-supplemented HECM-2m, blastocyst development was reduced by omission of lactate (68.5% ± 7.2), but not pyruvate (85.8% ± 6.2) or glutamine (84.1% ± 2.1). Succinate along with either glutamine or lactate or pyruvate poorly supported blastocyst development (28%-58%). Malate also stimulated blastocyst development; 0.01 mM malate was optimal (86.3% ± 2.8). Supplementation of both succinate and malate to HECM-2m supported maximal (100%) blastocyst development, which was inhibited 4-fold by the addition of glucose/phosphate. The mean cell numbers (MCN) of blastocysts cultured in succinate-supplemented HECM-2m was higher (28.3 ± 1.1) than it was for those cultured in the absence of glutamine or pyruvate (range 20-24). The MCN was the highest (33.4 ± 1.6) for blastocysts cultured in succinate-malate-supplemented HECM-2m followed by those in succinate (28.3 ± 1.1) or malate (24.7 ± 0.5) supplemented HECM-2m. Embryo transfer experiments showed that 29.8% (±4.5) of transferred blastocysts cultured in succinate-malate-supplemented HECM-2m produced live births, similar (P > 0.1) to the control transfers of freshly recovered 8-cells (33.5% ± 2.0) or blastocysts (28.9% ± 3.0). These data show that supplementation of succinate and malate to HECM-2m supports 100% development of hamster 8-cell embryos to high quality viable blastocysts and that non-glucose oxidizable energy substrates are the most preferred components in hamster embryo culture medium. Mol. Reprod. Dev. 47:440-447, 1997. © 1997 Wiley-Liss, Inc.
Resumo:
A major limitation to progress in primate embryology is the lack of an adequate supply of preimplantation embryos. We describe a method for recovering preimplantation-embryos in bonnet monkeys (Macaca radiata ) using a nonsurgical uterine flushing technique similar to the one previously employed in rhesus monkeys. Forty cyclic females were screened for cervical cannulation, and 10% of these had an impassable cervix. Eleven females suitable for cannulation were selected, and 27 menstrual cycles were monitored over a 5-mo period. Seventy-one percent of the cycles showed estrogen peaks, which were observed between Days 9 and 14 of the cycle. Following natural mating, uterine flushings were performed on Days 5 to 8 of pregnancy (Day 0 = the day following the estrogen peak). Of the 27 recovery attempts, 9 (33.3%) resulted in the recovery of ovulation products, including those of an unfertilized oocyte and empty zona (2 cases), retarded cleavage-stage (4 to 8-cell) embryos (4 cases), morula (1 case) and blastocysts (2 cases). These results show, for the first time, that the nonsurgical uterine flushing technique can be successfully performed to recover uterine-stage preimplantation embryos from bonnet monkeys.
Resumo:
5-Fluoro-2'-deoxyuricine is incorporated into DNA of mouse breast tumour Image . The incorporation is inhibited by thymidine. Part of the fluorodeoxyuridine is cleaved to fluorouracil and is incorporated into RNA. This incorporation is enhanced by thymidine. The result suggests that the major mechanism of action of the fluorouracil is due to its incorporation into RNA. FUra, 5-Fluorouracil; FdUR, 5-Fluoro-2'-deoxyuridine; FdUMP, 5-Fluoro-2'-deoxyuridine-5'-monophosphate.
Resumo:
The inßuence of the sperm motility stimulant pentoxifylline (PF) on preimplantation embryo development in hamsters was evaluated. Eight-cell embryos were cultured in hamster embryo culture medium (HECM)-2, with or without PF (0· 0233·6 mM). There was 90%, 37% and 29% inhibition of blastocyst development by 3·6 (used for human sperm), 0·9 and 0 ·45 mM PF, respectively. However, 23 µM PF (exposed to hamster oocytes during IVF) signicantly (P < 0·05) improved blastocyst development (63· 6% v. 51· 8%); morulae development was, however, not curtailed by 0·45 mM or 0·9 mM PF (51·8%±6·0 or 50·5%±11·3, respectively). Post-implantation viability of PF-treated embryos was assessed by embryo transfer; 43% of 80 PF-treated embryos implanted compared with 40% of 79 control embryos. Of the 9 recipients, 6 females delivered pups (19, i.e. 16% of transferred embryos or 53% of implanted embryos). These data show that in hamsters, continuous presence of PF at 0·45-3·6 mM is detrimental to 8-cell embryo development whereas 23 µM PF improves the development of embryos to viable blastocysts which produce live offspring.
Resumo:
Direct regeneration of somatic embryos was obtained from immature zygotic embryos of Dalbergia latifolia. Immature embryos dissected from green pods 90 d after flowering gave the highest frequency of somatic embryo formation. Preculture on high 2,4-D medium for 4 weeks induced direct somatic embryogenesis, which was expressed during the second culture phase in the presence of low 2,4-D along with a high sucrose concentration. Embryos were separated and transferred to the maturation medium containing MS + 0.5-1.0 mg/L BAP, where embryos developed into plantlets. Somatic embryos failed to convert into complete plants without BAP treatment. This method of direct regeneration of somatic embryos without a callus phase has direct application for genetic manipulation studies.
Resumo:
Background: Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology: Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cellmigration, including that of CCR4(+) Tregs. Significance: Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.
Resumo:
Safety, efficacy and enhanced transgene expression are the primary concerns while using any vector for gene therapy. One of the widely used vectors in clinical. trials is adenovirus which provides a safe way to deliver the therapeutic gene. However, adenovirus has poor transduction efficiency in vivo since most tumor cells express low coxsackie and adenovirus receptors. Similarly transgene expression remains low, possibly because of the chromatization of adenoviral genome upon infection in eukaryotic cells, an effect mediated by histone deacetylases (HDACs). Using a recombinant adenovirus (Ad-HSVtk) carrying the herpes simplex thymidine kinase (HSVtk) and GFP genes we demonstrate that HDAC inhibitor valproic acid can bring about an increase in CAR expression on host cells and thereby enhanced Ad-HSVtk infectivity. It also resulted in an increase in transgene (HSVtk and GFP) expression. This, in turn, resulted in increased cell kill of HNSCC cells, following ganciclovir treatment in vitro as well as in vivo in a xenograft nude mouse model.
Resumo:
We have overexpressed an 8.5-kDa mouse Ca2+/calmodulin kinase II inhibitor a protein (mCaMKIIN alpha) in Escherichia coli and demonstrate that the recombinant protein is a potent inhibitor of Ca2+/calmodulin kinase 11 (CaMKII) in vitro. However, antibodies raised against recombinant mCaMKIIN alpha. react with an similar to 37-kDa protein present in mouse brain. The pattern of expression of the similar to 37-kDa protein is similar to that of mCaMKIIN alpha mRNA as both are expressed in normal but not Japanese encephalitis virus (JEV)-infected mouse brain. Subcellular localization studies indicate that the similar to 37-kDa protein is present in the post-synaptic density (PSD) where mCaMKII alpha is known to perform key regulatory functions. We conclude that the similar to 37-kDa protein identified in this study is mCaMKIIN alpha. and its localization in the PSD indicates a novel role for this protein in the regulation of neuronal CaMKII alpha. (c) 2007 Elsevier B.V. All rights reserved.
Replication of Japanese encephalitis virus in mouse brain induces alterations in lymphocyte response
Resumo:
The experimental model using intracerebral (i.c.) challenge was employed in many studies evaluating the protection against disease induced by Japanese encephalitis virus (JEV). We investigated alterations in peripheral lymphocyte response caused by i.c. infection of mice with JEV. Splenocytes from the i.c.-infected mice showed suppressed proliferative response to concanavalin A (con A) and anti-CD3 antibody stimulation. At the same time, the expression of CD25 (IL-2R) and production of IL-2 was inhibited. Addition of anti-CD28 antibody restored the decreased anti-CD3 antibody-mediated proliferation in the splenocytes. Moreover, the number of con A-stimulated cells secreting IL-4 was significantly reduced in splenocytes from i.c.-infected mice. These studies suggested that the i.c. infection with JEV might involve additional immune modulation effects due to massive virus replication in the brain.
Resumo:
Administration of 3,5-diethoxy carbonyl-1,4-dihydrocollidine (DDC) to mice resulted in a striking increase in the level of δ-aminolevulinic acid (ALA) synthetase in liver. Although the enzyme activity was primarily localized in mitochondria and postmicrosomal supernatant fluid, a significant level of activity was also detected in purified nuclei. The time course of induction showed a close parallelism between the bound and free enzyme activities with the former always accounting for a higher percentage of the total activity as compared to the latter. Studies with cycloheximide indicated a half-life of around 3 hr for both the bound and free ALA synthetase. Actinomycin D and hemin prevented enzyme induction when administered along with DDC, but when administered 12 hr after DDC treatment Actinomycin D did not lead to a decay of either the bound or free enzyme activity and hemin inhibited the bound enzyme activity but not the free enzyme level. The molecular sizes of the mitochondrial and cytosolic ALA synthetase(s) were found to be similar on sephadex columns.