48 resultados para MONTMORILLONITE CLAY

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organo-clay was prepared by incorporating different amounts (in terms of CEC, ranging from 134-840 mg of quaternary ammonium cation (QACs) such as hexadecytrimethylammonium bromide (C19H42N]Br) into the montmorillonite clay. Prepared organo-clays are characterized by CHN analyser and XRD to measure the amount of elemental content and interlayer spacing of surfactant modified clay. The batch experiments of sorption of permanganate from aqueous media by organo-clays was studied at different acidic strengths (pH 1-7). The experimental results show that the rate and amount of adsorption of permanganate was higher at lower pH compared to raw montmorillonite. Laboratory fixed bed experiments were conducted to evaluate the breakthrough time and nature of breakthrough curves. The shape of the breakthrough curves shows that the initial cationic surfactant loadings at 1.0 CEC of the clay is enough to enter the permanganate ions in to the interlamellar region of the surfactant modified smectile clays. These fixed bed studies were also applied to quantify the effect of bed-depth and breakthrough time during the uptake of permanganate. Calculation of thermodynamic parameters shows that the sorption of permanganate is spontaneous and follows the first order kinetics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isoquinoline was prepared through the Beckmann rearrangement of cinnamaldoxime over different H-zeolites, K-10 montmorillonite clay, amorphous SiO2–Al2O3 and γ-alumina under well-optimized conditions of temperature, weight hourly space velocity and catalyst loading. Cinnamaldoxime under ambient reaction conditions over the catalysts underwent migration of the anti-styryl moiety to electron deficient nitrogen (Beckmann rearrangement) followed by an intramolecular cyclization to yield isoquinoline. Cinnamo-nitrile (dehydration product) and cinnamaldehyde were formed as by-products. Isoquinoline formation was high on zeolite catalysts (ca. >86.5%) and mordenite (ca. 92.3%) was the most efficient in the series. Catalysts were susceptible for deactivation and the decrease in the percentage conversion of oxime with time is associated with a corresponding increase in the acid hydrolysis producing salicylaldehyde at later stages of the reaction. However, these catalysts retain activity considerably and can be recycled without loss of activity and change of product distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sample of montmorillonite was pillared with aluminium polyoxycations in presence of different amounts of tween-80, a nonionic surfactant, ranging from 0.01 to 0.20 mmol/meq of clay. The amount of aluminium sorbed was found to vary with the amount of surfactant added during pillaring. Vapour phase catalytic activity of the samples for alkylation of toluene with methanol in a fixed bed down flow reactor showed that the rate of deactivation, in general, increased with decrease in the pillar density. The samples treated with 0.06 to 0.08 mmol/meq of surfactant showed the lowest deactivation and also an enhancement in the mesopores which did not change on calcining to 540°C. Suppression of deactivation is attributed to the distribution of pillars by the surfactant in such a way as to decrease the coke formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The esterification of stearic acid with p-cresol using modified Indian bentonite clay catalysts has been reported. The reaction was studied over exchanged clays, acid activated clays, exchanged acid activated clays, aluminium pillared clay, aluminium pillared acid activated clay, molecular sieve Al-MCM-41, zeolite H beta, ZrO2, S-ZrO2, p-TSA, montmorillonite K10, and montmorillonite KSF in o-xylene for 6 h. The catalysts were characterized by X-ray diffraction and surface area measurements. The acidity was determined by n-butylamine back-titration method and DRIFTS after pyridine adsorption. Acid activated Indian bentonite (AAIB) was found to be a better catalyst compared to other catalysts in the esterification of stearic acid with p-cresol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional (2D) nanosheets obtained by exfoliating inorganic layered crystals have emerged as a new class of materials with unique attributes. One of the critical challenges is to develop robust and versatile methods for creating new nanostructures from these 2D-nanosheets. Here we report the delamination of layered materials that belonging to two different classes - the cationic clay, montmorillonite, and the anionic clay, hydrotalcite - by intercalation of appropriate ionic surfactants followed by dispersion in a non-polar solvent. The solids are delaminated to single layers of atomic thickness with the ionic surfactants remaining tethered to the inorganic and consequently the nanosheets are electrically neutral. We then show that when dispersions of the two solids are mixed the exfoliated sheets self-assemble as a new layered solid with periodically alternating hydrotalcite and montmorillonite layers. The procedure outlined here is easily extended to other layered solids for creating new superstructures from 2D-nanosheets by self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential benefits of providing geocell reinforced sand mattress over clay subgrade with void have been investigated through a series of laboratory scale model tests. The parameters varied in the test programme include, thickness of unreinforced sand layer above clay bed, width and height of geocell mattress, relative density of the sand fill in the geocells, and influence of an additional layer of planar geogrid placed at the base of the geocell mattress. The test results indicate that substantial improvement in performance can be obtained with the provision of geocell mattress, of adequate size, over the clay subgrade with void. In order to have beneficial effect, the geocell mattress must spread beyond the void at least a distance equal to the diameter of the void. The influence of the void over the performance of the footing reduces for height of geocell mattress greater than 1.8 times the diameter of the footing. Better improvement in performance is obtained for geocells filled with dense soil. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the potential of Relevance Vector Machine (RVM)-based approach to predict the ultimate capacity of laterally loaded pile in clay. RVM is a sparse approximate Bayesian kernel method. It can be seen as a probabilistic version of support vector machine. It provides much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. RVM model outperforms the two other models based on root-mean-square-error (RMSE) and mean-absolute-error (MAE) performance criteria. It also stimates the prediction variance. The results presented in this paper clearly highlight that the RVM is a robust tool for prediction Of ultimate capacity of laterally loaded piles in clay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper materials like rice husk ash, burnt clay and red mud are examined for their pozzolanic properties. Rice husk ash, obtained from various sources, is analysed by X-ray diffraction. Compressive strength properties of lime-pozzolana mortars with rice husk ash, burnt clay and red mud as pozzolana are studied. Influence of grinding of rice husk ash and intergrinding with lime are also investigated. Combination pozzolana with partial replacement of burnt clay and red mud by rice husk ash are examined for their pozzolanic properties. Long term strength behaviour of lime-pozzolana mortars is investigated to understand the durability of lime-pozzolana cements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel zinc hydroxysalt–Pt metal nanoparticle composite was prepared by intercalation of the anionic platinum complex, [PtCl6]2− in nickel zinc hydroxysalt through ion exchange reaction and subsequent reduction of the platinum complex by ethanol. Powder X-ray diffraction and microscopy studies indicate that the process of reduction of the platinum complex in the interlayer region of the anionic clay takes place topotactically without destroying the layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible mechanisms of particle aggregation and reduction in liquid limit of the Cochin marine clay on drying are investigated. Mineralogical analysis showed the absence of halloysite in the marine specimen. Experimental results also ruled out the possibility of cementitious material being responsible for particle aggregation and reduction in clay plasticity on drying. The presence of calcium and magnesium as the predominant exchangeable ions and of a high pore salt concentration facilitates strong interparticle attraction and small particle separations; the latter leads to development of significant capillary stresses that permits an intimate contact of particles and growth of strong van der Waals' and Coulombic bonds.

Relevância:

20.00% 20.00%

Publicador: