77 resultados para MOLTEN-SALT

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and efficient method for spontaneous organization of long assemblies of gold nanoparticles is described. This is achieved in a molten solvent containing acetamide, urea and ammonium nitrate that acts as a solvent cum stabilizer. There is no external aggregating agent or stabilizing agent added to the system. Depending on the concentration of the metal salt in the ternary melt, either chain-like assemblies or individual nanoparticles could be obtained. The amine groups present in the components of the melt (acetamide and urea) help in the stabilization of nanoparticles. Ammonium ions present in the eutectic mixture are likely to assist in the organization of the particles. The method is simple, highly reproducible and does not require any templating agent for the formation of chain-like assemblies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sr2SbMnO6 (SSM) powders were successfully synthesized at reasonably low temperatures via molten-salt synthesis (MSS) method using eutectic composition of 0.635 Li2SO4-0.365 Na2SO4 (flux). High-temperature cubic phase SSM was stabilized at room temperature by calcining the as-synthesized powders at 900 degrees C/10 h. The phase formation and morphology of these powders were characterized via X-ray powder diffraction and scanning electron microscopy, respectively. The SSM phase formation associated with similar to 60 nm sized crystallites was also confirmed by transmission electron microscopy. The activation energy associated with the particle growth was found to be 95 +/- 5 kJ mol(-1). The dielectric constant of the tetragonal phase of the ceramic (fabricated using this cubic phase powder) with and without the flux (sulphates) has been monitored as a function of frequency (100 Hz-1 MHz) at room temperature. Internal barrier layer capacitance (IBLC) model was invoked to rationalize the dielectric properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lanthanide metals lanthanum, praseodymium and neodymium containing 2,200, 2,600, 1,850 mass ppm oxygen, respectively, were deoxidized to 20-30 ppm level at 1,073 K by an electrochemical method. The metal to be deoxidized was used as the cathode in an electrolysis cell which consisted of a graphite anode and molten CaCl2 electrolyte. The calcium metal produced at the cathode by electrolysis effectively deoxidized the lanthanide metal. Calcium oxide produced by deoxidation, dissolved in the melt. The liberation of carbon monoxide/dioxide at the anode was found to prevent accumulation of oxygen in the melt. For a quantitative discussion of the limits of deoxidation achievable by this technique, a thermodynamic investigation of the lanthanide-oxygen (Ln-O ; Ln = La, Pr, Nd) solid solutions was conducted. The lanthanide metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt, containing a small quantity of dissolved CaO, at 1,093 K. The oxygen potential of the melt and the Ln-O solid solutions were obtained from the oxygen content of yttrium samples at equilibrium, and the known thermodynamic properties of yttrium-oxygen solid solution. The results were confirmed by using Y/Y2O3 equilibrium to control the oxygen potential of the molten salt reservoir. The oxygen affinity of the metals was found to decrease in the order : Y > Ti > Nd > Pr > La. The deoxidation results are consistent with the thermodynamic properties of the RE-O solid solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In steel refining process, an increase of interfacial area between the metal and slag through the metal droplets emulsified into the slag, so-called ``metal emulsion'', is one prevailing view for improving the reaction rate. The formation of metal emulsion was experimentally evaluated using Al-Cu alloy as metal phase and chloride salt as slag phase under the bottom bubbling condition. Samples were collected from the center of the salt phase in the container. Large number of metal droplets were separated from the salt by dissolving it into water. The number, surface area, and weight of the droplets increased with the gas flow rate and have local maximum values. The formation and sedimentation rates of metal droplets were estimated using a mathematical model. The formation rate increased with the gas flow rate and has a local maximum value as a function of gas flow rate, while the sedimentation rate is independent of the gas flow rate under the bottom bubbling condition. Three types of formation mode of metal emulsion, which occurred by the rupture of metal film around the bubble, were observed using high speed camera. During the process, an elongated column covered with metal film was observed with the increasing gas flow rate. This elongated column sometimes reached to the top surface of the salt phase. In this case, it is considered that fine droplets were not formed and in consequence, the weight of metal emulsion decreased at higher gas flow rate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermodynamic properties of Li3N dissolved in the molten LiCl salt at 900 K were explored using electrochemical methods. It was difficult to determine precisely the decomposition voltage of Li3N dissolved in the molten salt by cyclic voltammetry. The oxidation wave of N3– ion could not be located with high accuracy. However, the lithium activity of the Pb-Li alloy in equilibrium with the molten salt containing dissolved Li3N under nitrogen atmosphere could be measured electrochemically with high accuracy using the Li/Li + reference electrode. Under the conditions used in this study, the potential of the Li-Pb electrode is equal to the decomposition voltage of Li3N. The activity of Li3N in molten LiCl was determined for anionic fractions of N3– ranging from xN3– = 10–4 to 0.028. The nitride ion concentration in the salt was determined by chemical titration. The activity coefficient of the Li3N at high dilution was found to be very low, around 10–4. The activity coefficient increases sharply with composition and has a value of 0.25 at xN3– = 0.028. ©2001 The Electrochemical Society. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The removal of oxygen from rare-earth metals (RE, RE=Gd, Tb, Dy, Er) by an electrochemical deoxidation method was investigated. A titanium basket containing the rare-earth metal sample, submerged in molten CaCl2 electrolyte, formed the cathode of an electrolysis cell. A high-purity graphite anode was used. The calcium metal produced at the cathode effectively deoxidized the rare-earth metal. Carbon monoxide and dioxide were generated at the graphite anode. Rare-earth metals containing more than 2000 mass ppm oxygen were deoxidized to 10–50 mass ppm level by electrolysis at 1189 K for 36 ks (10 h). Cyclic voltammetry was used to characterize the molten salt at different stages of the process. The effectiveness of the process is discussed with the aid of a chemical potential diagram for RE–O solid solutions. The new electrochemical technique is compared with the conventional deoxidation methods reported in the literature. The possibility of nitrogen removal from the rare-earth metals by the electrochemical method is outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Explored in this study is an electronically mediated reaction (EMR) route for the production of niobium powder using calcium as a reductant for niobium oxide (Nb2O5). Feed material, Nb2O5, and reductant calcium alloy containing aluminum and nickel were charged into electronically isolated locations in a molten salt (e.g. CaCl2) at 1173 K. The current flow through an external path between the feed and reductant locations was monitored. A current approximately 0.4 A was measured during the reaction in the external circuit connecting cathode and anode location. Niobium powder with low aluminum and nickel content was obtained although liquid Ca–Al–Ni alloy was used as the reductant. This clearly demonstrates that niobium metal powder can be produced by an electronically mediated reaction (EMR), without direct physical contact between feed (Nb2O5) and reductant (calcium). Mechanism of calciothermic reduction of Nb2O5 in the molten salt is discussed using an isothermal chemical potential diagram.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sr2SbMnO6 (SSMO) ceramics were, fabricated using the nanocrystalline powders obtained via molten salt synthesis (MSS) method. High temperature X-ray diffraction studies confirmed the structural phase transition (room temperature tetragonal (I4/mcm) to the cubic phase (Pm-3m)) temperature to be around 736K. The discontinuity in the phase transition indicated its first order nature reflecting the presence of ferroelectric-like distortions in SSMO prepared from MSS which seemed to be unique as it was not observed so far in the case of SSMO prepared using solid-state reaction method. The dielectric behavior of SSMO was studied in the 300-950 K temperature range at high frequencies (MHz range) in order to suppress the of space charge and related effects that dominate at such higher temperatures and mask the real phase transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single crystalline LiTaO3 nanorods (length of 2.5-6 mu m and diameter of 200-500 nm) were synthesized via a facile molten-salt technique. An individual single crystalline nanorod exhibited a piezoelectric coefficient of 8 pm V-1. An improved optical frequency-doubling efficiency was observed in the case of LiTaO3 nanorods as compared to that of cubic crystallites of similar size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the transient dynamics of disturbances inside a thermocline based molten salt thermal energy storage (TES). Numerical simulations were conducted with four inlet flow configurations. The disturbances introduced at the inlet grow via Rayleigh Taylor instability. The formed vortical motions inside the tank propagate downstream and destroy the thermocline. The vortex-thermocline interaction upsets the stratification inside the TES. The disturbance growth rate, penetration length and vortex Reynolds number are measured. The growth of penetration length prior to the vortex-thermocline interaction is quadratic. The vortex Reynolds number of the eddy which causes thermocline breakdown increases with increase in Atwood number. The impingement of vortex on thermocline is studied. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulations are performed to study the stability characteristics of a molten salt thermocline storage unit. Perturbations are introduced into a stable flow field in such a way as to make the top-fluid heavier than the fluid at the bottom, thereby causing a possible instability in the system. The evolution pattern of the various disturbances are examined in detail. Disturbances applied for short duration get decayed before they could reach the thermocline, whereas medium and long duration disturbances evolve into a ``falling spike'' or ``stalactite-like'' structure and destabilize the thermocline. Rayleigh Taylor instability is observed inside the storage tank. The effect of the duration, velocity and temperature of the disturbance on thermocline thickness and penetration length are studied. A quadratic time dependence of penetration length was observed. New perspectives on thermocline breakdown phenomena are obtained from the numerical flow field. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig 2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semi-empirical model is presented for describing the interionic interactions in molten salts using the experimentally available structure data. An extension of Bertaut's method of non-overlapping charges is used to estimate the electrostatic interaction energy in ionic melts. It is shown, in agreement with earlier computer simulation studies, that this energy increases when an ionic salt melts. The repulsion between ions is described using a compressible ion theory which uses structure-independent parameters. The van der Waals interactions and the thermal free energy are also included in the total energy, which is minimised with respect to isostructural volume variations to calculate the equilibrium density. Detailed results are presented for three molten systems, NaCl, CaCl2 and ZnCl2, and are shown to be in satisfactory agreement with experiments. With reliable structural data now being reported for several other molten salts, the present study gains relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new liquid crystalline phase, induced by the addition of small amounts of a non-mesogenic solute (such as dimethyl sulphoxide or methyl iodide) to a quaternary ammonium salt, N-methyl-N,N,N-trioctadecylammonium iodide (MTAI), has been detected by NMR and optical microscopic studies. In some cases, there is a coexistence of nematic and smectic phases. Information on the ordering of the phases in the magnetic field of the spectrometer has been derived from NMR spectra of a dissolved molecule, C-13-enriched methyl iodide. The low order parameter of the pure thermotropic nematic phase of the salt provides first-order spectra of the dissolved oriented molecules. Analyses of spectra of cis,cis-mucononitrile exemplifies the utility of the MTAI nematic phase in the determination of structural parameters of the solute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our earlier study, we have observed that hypokalemia in langur monkeys, following gossypol acetic acid (GAA) treatment (5 mg dose level) when used as an antispermatogenic agent, and potassium salt supplementation partially maintained body potassium level of the animals. The aims of the present investigation was to confirm further occurrence of hypokalemia in the monkey (comparatively at two higher dose levels) and the role of potassium salt in preventing occurrence of gossypol-induced hypokalemia. Highly purified gossypol acetic acid alone at two dose levels (7.5 and 10 mg/animal/day; oral) and in combination with potassium chloride (0.50 and 0.75 mg/animal/day; oral) was given for 180 days. Treatment with gossypol alone as well as with the supplementation of potassium salt resulted in severe oligospermia and azoospermia. Animals receiving gossypol alone showed significant potassium deficiency with signs of fatigue at both dose levels. Enhanced potassium loss through urine was found in potassium-deficient animals, whereas animals receiving gossypol acetic acid plus potassium salt showed normal serum potassium with a less significant increase in urine potassium level during treatment phases. Other parameters of the body remained within normal range except gradual and significant elevation in serum transaminases activity. The animals gradually returned to normalcy following 150 and 180 days of termination of the treatment.