4 resultados para MLS

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrument landing systems (ILS) and the upcoming microwave landing systems (MLS) are (or are planned to be) very important navigational aids at most major airports of the world. However, their performance is directly affected by the features of the site in which they are located. Currently, validation of the ILS performance is through costly and time-consuming experimental methods. This paper outlines a powerful and versatile analytical approach for performing the site evaluation, as an alternative to the experimental methods. The approach combines a multi-plate model for the terrain with a powerful and exhaustive ray-tracing technique and a versatile and accurate formulation for estimating the electromagnetic fields due to the array antenna in the presence of the terrain. It can model the effects of the undulation, the roughness and the impedance (depending on the soil type) of the terrain at the site. The results computed from the analytical method are compared with the actual measurements and good agreement is shown. Considerations for site effects on MLS are also outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents design of a Low power 256x72 bit TCAM in 0.13um CMOS technology. In contrast to conventional Match line (ML) sensing scheme in which equal power is consumed irrespective of match or mismatch, the ML scheme employed in this design allocates less power to match decisions involving a large number of mismatched bits. Typically, the probability of mismatch is high so this scheme results in significant CAM power reduction. We propose to use this technique along with pipelining of search operation in which the MLs are broken into several segments. Since most words fail to match in first segment, the search operation for subsequent segments is discontinued, resulting in further reduction in power consumption. The above architecture provides 70% power reduction while performing search in 3ns.