236 resultados para METHYL-ESTERS

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ligating properties of 2-aminocyclopentene-1-dithiocarboxylic acid and its S-methyl esters were investigated. Complexes with Zn(II), Cd(II) and Hg(II) halides were synthesized and characterized by infrared and proton and carbon-13 NMR studies. The results are concordant with a bidentate coordination of the -CS2 group to the metal ions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In lean premixed pre-vaporized (LPP) combustion, controlled atomization, dispersion and vaporization of different types of liquid fuel in the premixer are the key factors required to stabilize the combustion process and improve the efficiency. The dispersion and vaporization process for biofuels and conventional fuels sprayed into a crossflow pre-mixer have been simulated and analyzed with respect to vaporization rate, degree of mixedness and homogeneity. Two major biofuels under investigation are Ethanol and Rapeseed Methyl Esters (RME), while conventional fuels are gasoline and jet-A. First, the numerical code is validated by comparing with the experimental data of single n-heptane and decane droplet evaporating under both moderate and high temperature convective air now. Next, the spray simulations were conducted with monodispersed droplets with an initial diameter of 80 mu m injected into a turbulent crossflow of air with a typical velocity of 10 m/s and temperature of around 800K. Vaporization time scales of different fuels are found to be very different. The droplet diameter reduction and surface temperature rise were found to be strongly dependent on the fuel properties. Gasoline droplet exhibited a much faster vaporization due a combination of higher vapor pressure and smaller latent heat of vaporization compared to other fuels. Mono-dispersed spray was adopted with the expectation of achieving more homogeneous fuel droplet size than poly-dispersed spray. However, the diameter histogram in the zone near the pre-mixer exit shows a large range of droplet diameter distributions for all the fuels. In order to improve the vaporization performance, fuels were pre-heated before injection. Results show that the Sauter mean diameter of ethanol improved from 52.8% of the initial injection size to 48.2%, while jet-A improved from 48.4% to 18.6% and RME improved from 63.5% to 31.3%. The diameter histogram showed improved vaporization performance of jet-A. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Algae grown in outdoor reactors (volume: 10 L and depth: 20 cm) were fed directly with filtered and sterilised municipal wastewater. The nutrient removal efficiencies were 86%, 90%, 89%, 70% and 76% for TOC, TN, NH4-N, TP and OP, respectively, and lipid content varied from 18% to 28.5% of dry algal biomass. Biomass productivity of similar to 122 mg/l/d (surface productivity 24.4 g/m(2)/d) and lipid productivity of similar to 32 mg/l/d were recorded. Gas chromatography and mass spectrometry (GC-MS) analyses of the fatty acid methyl esters (FAME) showed a higher content of desirable fatty acids (bearing biofuel properties) with major contributions from saturates such as palmitic acid C16:0; similar to 40%] and stearic acid C18:0; similar to 34%], followed by unsaturates such as oleic acid C18:1(9); similar to 10%] and linoleic acid C18:2(9,12); similar to 5%]. The decomposition of algal biomass and reactor residues with an exothermic heat content of 123.4 J/g provides the scope for further energy derivation. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rates of alkaline hydrolysis of methyl &benzoylpropionate (I), methyl y-benzoylbutyrate (11) and methyll6-benzoylvalerate (In) decrease in the order I > I1 > III. Keto participation is the predominant pathway in the case of y-keto esters. Evidence has also been obtained for keto participation in the case of 6-keto esters, whereas no such evidence is available in the case of r-keto esters studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variable temperature proton and ambient temperature carbon-13 NMR spectra of S-methyl dithiocarbamate esters have been recorded. The results of the theoretical energy calculations (CNDO/2 and EHT types) together with the experimental data have been interpreted in terms of the molecular conformations. The barrier heights for the rotation about the thioamide C—N bond are calculated using the CNDO/2 method and the results are discussed in terms of the computed charge densities and bond orders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DDHQ/TCC esters 3a–f, 7a–g were prepared either by oxidation of spiroketones 1 with DDQ/Image -chloranil or by condensation of acid chloride with DDHQ/TCC. NaBH4 reduction of unsaturated DDHQ 3a–b and TCC 7a–c esters gave the corresponding allylic alcohols in good yield without any observable 1,4-addition products. Reduction of saturated esters 3e, 7d, gave the corresponding alcohols. Alkyl esters 5 and 6, methyl benzoate and phenyl benzoate remained unaffected under these reduction conditions. In the reduction of compound 7e containing both alkyl and TCC esters, TCC ester is selectively reduced. Reduction of TCC mono esters 7f–g gave the lactones. The observed facile reduction has been rationalised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simple dialkyl oxalates are generally liquids at room temperature except for dimethyl and di-tert-butyl oxalate which melt at 327 and 343 K. The crystal structures of diethyl, di-iso-propyl, di-n-butyl, di-tert-butyl and methyl ethyl oxalates were determined. The liquid esters were crystallized using the cryocrystallization technique. A comparison of the intermolecular interactions and packing features in these crystal structures was carried out. The crystal structure of dimethyl oxalate was redetermined at various temperatures. The other compounds were also studied at several temperatures in order to assess the attractive nature of the hydrogen bonds therein. A number of moderate to well defined C-H center dot center dot center dot O interactions account for the higher melting points of the two solid esters. Additionally, a diminished entropic contribution Delta S(m) in di-tert-butyl oxalate possibly increases the melting point of this compound further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-component chiral derivatization protocols have been developed for H-1, C-13 and F-19 NMR spectroscopic discrimination of chiral diacids by their coordination and self-assembly with optically active (R)-alpha-methylbenzylamine and 2-formylphenylboronic acid or 3-fluoro-2-formylmethylboronic acid. These protocols yield a mixture of diastereomeric imino-boronate esters which are identified by the well-resolved diastereotopic peaks with significant chemical shift differences ranging up to 0.6 and 2.1 ppm in their corresponding H-1 and F-19 NMR spectra, without any racemization or kinetic resolution, thereby enabling the determination of enantiopurity. A protocol has also been developed for discrimination of chiral alpha-methyl amines, using optically pure trans-1,2-cyclohexanedicarboxylic acid in combination with 2-formylphenylboronic acid or 3-fluoro-2-fluoromethylboronic acid. The proposed strategies have been demonstrated on large number of chiral diacids and chiral alpha-methyl amines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic and thermal degradations of poly(methyl methacrylate), poly(butyl acrylate), and their copolymers of different compositions were studied. The photocatalytic degradation was investigated in o-dichlorobenzene in the presence of two different catalysts, namely, Degussa P-25 and combustion synthesized nanotitania (CSN-TiO2). The samples were analyzed by using gel permeation chromatography (GPC) to obtain the molecular weight distributions (MWDs) as a function of reaction time. Experimental data indicated that the photodegradation of these polymers occurs by both random and chain end scission. A continuous distribution kinetic model was used to determine the degradation rate coefficients by fitting the experimental data with the model. Both the random and specific rate coefficients of the copolymers decreased with increasing percentage of butyl acrylate (BA). Thermal degradation of the copolymers was investigated by thermo-gravimetry. The normalized weight loss profiles for the copolymers showed that the thermal stability of the copolymers increased with mole percentage of BA in the copolymer (PMMABA). The Czawa method was used to determine the activation energies at different conversions. At low acrylate content in the copolymer, the activation energy depends on conversion, indicating multiple degradation mechanisms. At high acrylate content in the copolymer, the activation energy is independent of conversion, indicating degradation by a one-step mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, C4H5N3O2, features an essentially planar molecule (r.m.s. deviation for all non-H atoms = 0.013 angstrom). The crystal structure is stabilized by intermolecular N-H center dot center dot center dot O hydrogen bonds and pi-pi stacking interactions (centroid centroid distance 3.882 angstrom).