188 resultados para METHYL ACRYLATE

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation hromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission.Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The copolymers, poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA), of different compositions were synthesized and characterized. The effect of alkyl acrylate content, alkyl group substituents and solvents on the ultrasonic degradation of these copolymers was studied. A model based on continuous distribution kinetics was used to study the kinetics of degradation. The rate coefficients were obtained by fitting the experimental data with the model. The linear dependence of the rate coefficients on the logarithm of the vapor pressure of the solvent indicated that vapor pressure is the crucial parameter that controls the degradation process. The rate of degradation increases with an increase in the alkyl acrylate content. At any particular copolymer composition, the rate of degradation follows the order: PMMAMA > PMMAEA > PMMABA. It was observed that the degradation rate coefficient varies linearly with the mole percentage of the alkyl acrylate in the copolymer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Full Paper: The copolyperoxides of various compositions of indene with methyl acrylate, ethyl acrylate and butyl acrylate have been synthesized by the free-radical-initiated oxidative copolymerization. The compositions of copolyperoxide obtained from H-1 and C-13 NMR spectra have been used to determine the reactivity ratios of the monomers. The copolyperoxides contain a greater proportion of the indene units in random placement. The NMR studies have shown irregularities in the copolyperoxide chain due to the cleavage reactions of the propagating peroxide radical. The thermal analysis by differential scanning calorimetry suggests alternating peroxide units in the copolyperoxide chain. From the activation energy for the thermal degradation, it was inferred that degradation occurs via the dissociation of the peroxide (O-O) bonds of the copolyperoxide chain. The flexibility of the polyperoxides in terms of glass transition temperature (T-g) has also been examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gelatin-g-poly(methyl acrylate) and gelatin-g-poly(acrylonitrile) copolymers were prepared in an aqueous medium using K2S2O8 initiator. A plausible mechanism has been put forward for the observed grafting behavior of monomers. Gelatin-g-PAN showed a greater resistance to mixed bacterial inolucum compared to gelatin-g-PMA samples. The rate of degradation decreased with the increase in grafting efficiency. A parallel set of experiments carried out by employing the samples as the only source of both carbon and nitrogen showed a marginal but definite increase in the utilization of the polymer. The nitrogen analysis also showed the utilization of the polymer. Scanning electron micographs of the polymer films do show extensive pitting after microbiological testing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some tetra substituted furans and thiophenes were reacted with methyl acrylate under BF3-etherate catalysed Diels-Alder conditions. While the derivatives of furan underwent Diels-Alder reaction in a facile manner, an observation of 2,5-dimethyl-3,4-dianisylthiophene undergoing Diels-Alder reaction with methyl acrylate is remarkable. (C) 1997, Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The photocatalytic and thermal degradations of poly(methyl methacrylate), poly(butyl acrylate), and their copolymers of different compositions were studied. The photocatalytic degradation was investigated in o-dichlorobenzene in the presence of two different catalysts, namely, Degussa P-25 and combustion synthesized nanotitania (CSN-TiO2). The samples were analyzed by using gel permeation chromatography (GPC) to obtain the molecular weight distributions (MWDs) as a function of reaction time. Experimental data indicated that the photodegradation of these polymers occurs by both random and chain end scission. A continuous distribution kinetic model was used to determine the degradation rate coefficients by fitting the experimental data with the model. Both the random and specific rate coefficients of the copolymers decreased with increasing percentage of butyl acrylate (BA). Thermal degradation of the copolymers was investigated by thermo-gravimetry. The normalized weight loss profiles for the copolymers showed that the thermal stability of the copolymers increased with mole percentage of BA in the copolymer (PMMABA). The Czawa method was used to determine the activation energies at different conversions. At low acrylate content in the copolymer, the activation energy depends on conversion, indicating multiple degradation mechanisms. At high acrylate content in the copolymer, the activation energy is independent of conversion, indicating degradation by a one-step mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photolytic and photocatalytic degradation of the copolymers poly(methyl methacrylate-co-butyl methacrylate) (MMA–BMA), poly(methyl methacrylate-co-ethyl acrylate) (MMA–EA) and poly(methyl methacrylate-co-methacrylic acid) (MMA–MAA) have been carried out in solution in the presence of solution combustion synthesized TiO2 (CS TiO2) and commercial Degussa P-25 TiO2 (DP 25). The degradation rates of the copolymers were compared with the respective homopolymers. The copolymers and the homopolymers degraded randomly along the chain. The degradation rate was determined using continuous distribution kinetics. For all the polymers, CS TiO2 exhibited superior photo-activity compared to the uncatalysed and DP 25 systems, owing to its high surface hydroxyl content and high specific surface area. The time evolution of the hydroxyl and hydroperoxide stretching vibration in the Fourier transform-infrared (FT-IR) spectra of the copolymers indicated that the degradation rate follows the order MMA–MAA > MMA–EA > MMA–BMA. The same order is observed for the rate coefficients of photocatalytic degradation. The photodegradation rate coefficients were compared with the activation energy of pyrolytic degradation. In degradation by pyrolysis, it was observed that MMA–BMA was the least stable followed by MMA–EA and MMA–MAA. The observed contrast in the order of thermal stability compared to the photo-stability of these copolymers was attributed to the two different mechanisms governing the scission of the polymer and the evolution of the products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, C4H5N3O2, features an essentially planar molecule (r.m.s. deviation for all non-H atoms = 0.013 angstrom). The crystal structure is stabilized by intermolecular N-H center dot center dot center dot O hydrogen bonds and pi-pi stacking interactions (centroid centroid distance 3.882 angstrom).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly of bidentate ligand, 1,10-phenanthroline with C-methyl calix[4]resorcinarene (CMCR) in presence of coumarin results in a unique trimer stacking arrangement of phenanthroline molecules in a nanotubular motif generated by the supramolecular assembly of the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MeNCS undergoes insertion into the copper(I)-aryloxide bond to form [N-methylimino(aryloxy)methanethiolato]-copper(I) complexes. This insertion occurs in the absence of ancillary ligands unlike the analogous insertion of PhNCS. The reaction with 4-methylphenoxide results in the formation of hexakis[[N-methylimino(4-methylphenoxy) methanethiolato]copper(I)] (1), which has been characterized by X-ray crystallography. Crystal data for 1: hexagonal , a = 12.365(3) Angstrom, c = 36.734(16) Angstrom, gamma = 120 degrees, Z = 3, V = 4863(3) Angstrom(3), R = 0.0306. Reactions of 2,6-dimethyl- and 4-chlorophenoxides also result in analogous copper(I) complexes 2 and 3. Addition of stochiometric amounts of PPh(3) to the oligomeric complexes typically results in the extrusion of MeNCS. The ease of extrusion is dependent on the substituents on the aryloxide, and this deinsertion is accelerated by water. However, the extrusion reaction is slow enough in the case of the N-methylimino(2,6-dimethylphenoxy)-methanethiolate complex and the isolation of an intermediate monomeric product bis(triphenylphosphine)[N-methylimino(2, 6-dimethylphenoxy)methanethiolato] copper(I) (4) is possible. Crystal data for 4: triclinic , a = 10.088(2) Angstrom, b = 11.302(1) Angstrom, c = 17.990(2) Angstrom, alpha = 94.06(1)degrees, beta = 95.22(2)degrees, gamma = 103.94(1)degrees, Z = 2, V = 1974.4(7) Angstrom(3), R = 0.0361. In the presence of of PPh(3), the insertion reaction becomes reversible. This allows the exchange of the heterocumulene MeNCS or the aryloxy group in these molecules with another heterocumulene or a phenol, respectively, when catalytic amounts of PPh(3) are added. Oligomers with exchanged heterocumulmes and phenols could be characterized by independent synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mr = 248, monoclinic, P21/n, a = 12.028 (2), b=7.168(2), c= 15.187(5)A, fl=91.88(2) °, Z= 4, V= 1308.6,~3, Din= 1.26, Dx= 1.263 Mgm -3, 2 (Cu Ka) = 1.5418 .A, g = 0.86 mm -1, F(000) = 536, T= 293 K. Final R = 5.6% for 2120 observed reflexions. Owing to the push-pull effect, the C=C bond distance is as long as 1.464 (2)/k with the twist angle about the bond 62.6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ligating properties of 2-aminocyclopentene-1-dithiocarboxylic acid and its S-methyl esters were investigated. Complexes with Zn(II), Cd(II) and Hg(II) halides were synthesized and characterized by infrared and proton and carbon-13 NMR studies. The results are concordant with a bidentate coordination of the -CS2 group to the metal ions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CIoH15NO282, Mr=245"0, orthorhombic, P21212 ~, a = 6.639 (2), b = 8.205 (2), c = 22.528(6)A, V= I227.2(6)A 3, z=4, Dm= 1.315, Dx= 1.326gem -3, MoKa, 2=0.7107A, 12= 3.63 cm -1, F(000) = 520, T= 293 K, R = 0.037 for 1115 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is only 1/10th of the urea standard. The observed low second-order nonlinear response may be attributed to the unfavourable packing of the molecules in the crystal lattice.