10 resultados para MEMBERS
em Indian Institute of Science - Bangalore - Índia
Resumo:
The ultramicrostructure of phases with n = 1, 2 and 3 in the hypothetical series Bi2WnO3n+3 has been investigated by high resolution electron microscopy and energy dispersive X-ray emission spectroscopy. For n = 1 and 2, well ordered phases with the predicted compositions have been obtained, but for n = 3, a severely disordered assemblage containing intergrowths of the two known structures and strips of the n = 3 member is produced. No evidence for ordered structures with n > 2 has yet been obtained.
Resumo:
The ultramicrostructure of phases with n = 1, 2 and 3 in the hypothetical series Bi2WnO3n+3 has been investigated by high resolution electron microscopy and energy dispersive X-ray emission spectroscopy. For n = 1 and 2, well ordered phases with the predicted compositions have been obtained, but for n = 3, a severely disordered assemblage containing intergrowths of the two known structures and strips of the n = 3 member is produced. No evidence for ordered structures with n > 2 has yet been obtained.
Resumo:
Escherichia coil encodes two aminopeptidases belonging to the M17 family: Peptidase A (PepA) and Peptidase B (PepB). To gain insights into their substrate specificities, PepA or PepB were overexpressed in Delta pepN, which shows greatly reduced activity against the majority of amino acid substrates. Overexpression of PepA or PepB increases catalytic activity of several aminopeptidase substrates and partially rescues growth of Delta pepN during nutritional downshift and hightemperature stress. Purified PepA and PepB display broad substratespecificity and Leu, Lys, Met and Gly are preferred substrates. However, distinct differences are observed between these two paralogs: PepA is more stable at high temperature whereas PepB displays broader substrate specificity as it cleaves Asp and insulin B chain peptide. Importantly, this strategy, i.e. overexpression of peptidases in Delta pepN and screening a panel of substrates for cleavage, can be used to rapidly identify peptidases with novel substrate specificities encoded in genomes of different organisms. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The technique of nebulized spray pyrolysis has been explored to find out whether oriented films of certain important oxides can be produced on single-crystal substrates by this relatively gentle method. Starting with acetylacetonate precursors, oriented films of metallic LaNiO3 containing nearly spherical grains (30 nm) have been obtained. Films of near-stoichiometric La4Ni3O10 and La3Ni2O7 showing metallic conductivity have been obtained by this method. This is indeed gratifying since it is difficult to prepare monophasic and stoichiometric bulk samples of these materials. Films of La2NiO4 show the expected semiconducting behavior. In the La-Cu-O system, starting with acetylacetonates, we have obtained films mainly comprising semiconducting La2Cu2O5, which is generally difficult to prepare in bulk form. More interestingly, nebulized spray pyrolysis gives excellent stoichiometric films of Pb(Zr0.52Ti0.48)O-3 consisting of nearly spherical grains (30 nm) which show ferroelectric behavior. The present investigation demonstrates that nebulized spray pyrolysis provides a useful and desirable route to deposite oriented films of complex oxide materials on single-crystal substrates.
Resumo:
We describe the synthesis and structural characterization of new layered bismuth titanates, A[Bi3Ti4O13] and A[Bi3PbTi5O16]for A = K, Cs, corresponding to n = 4 and 5 members of the Dion-Jacobson series of layered perovskites of the general formula, A[A'n-1BnO3n+1]. These materials have been prepared by solid state reaction of the constituents containing excess alkali, which is required to suppress the formation of competitive Aurivillius phases. Unlike the isostructural niobates and niobium titanates of the same series, the new phases reported here are spontaneously hydrated-a feature which could make them potentially useful as photocatalysts for water splitting reaction. On hydration of the potassium compounds, the c axis expands by ca. 2 Angstrom and loses its doubling [for example, the tetragonal lattice parameters of K[Bi3Ti4O13] and its dihydrate are respectively a = 3900(1)Angstrom c 37.57(2) Angstrom; a 3.885(1) Angstrom, c = 20.82(4) Angstrom]; surprisingly, the cesium analogues do not show a similar change on hydration.
Resumo:
A natural velocity field method for shape optimization of reinforced concrete (RC) flexural members has been demonstrated. The possibility of shape optimization by modifying the shape of an initially rectangular section, in addition to variation of breadth and depth along the length, has been explored. Necessary shape changes have been computed using the sequential quadratic programming (SQP) technique. Genetic algorithm (Goldberg and Samtani 1986) has been used to optimize the diameter and number of main reinforcement bars. A limit-state design approach has been adopted for the nonprismatic RC sections. Such relevant issues as formulation of optimization problem, finite-element modeling, and solution procedure have been described. Three design examples-a simply supported beam, a cantilever beam, and a two-span continuous beam, all under uniformly distributed loads-have been optimized. The results show a significant savings (40-56%) in material and cost and also result in aesthetically pleasing structures. This procedure will lead to considerable cost saving, particularly in cases of mass-produced precast members and a heavy cast-in-place member such as a bridge girder.
Resumo:
Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.