108 resultados para MDS codes
em Indian Institute of Science - Bangalore - Índia
Resumo:
Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary of nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n - 1 >= 2k - 1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d < 2k - 3 in the absence of symbol extension, and (d) the construction, also explicit, of high-rate MSR codes for d = k+1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the nonexistence proof for d < 2k - 3. To the best of our knowledge, the constructions presented in this paper are the first explicit constructions of regenerating codes that achieve the cut-set bound.
Resumo:
The constraint complexity of a graphical realization of a linear code is the maximum dimension of the local constraint codes in the realization. The treewidth of a linear code is the least constraint complexity of any of its cycle-free graphical realizations. This notion provides a useful parameterization of the maximum-likelihood decoding complexity for linear codes. In this paper, we show the surprising fact that for maximum distance separable codes and Reed-Muller codes, treewidth equals trelliswidth, which, for a code, is defined to be the least constraint complexity (or branch complexity) of any of its trellis realizations. From this, we obtain exact expressions for the treewidth of these codes, which constitute the only known explicit expressions for the treewidth of algebraic codes.
Resumo:
The treewidth of a linear code is the least constraint complexity of any of its cycle-free graphical realizations. This notion provides a useful parametrization of the maximum-likelihood decoding complexity for linear codes. In this paper, we compute exact expressions for the treewidth of maximum distance separable codes, and first- and second-order Reed-Muller codes. These results constitute the only known explicit expressions for the treewidth of algebraic codes.
Resumo:
It is well known that n-length stabilizer quantum error correcting codes (QECCs) can be obtained via n-length classical error correction codes (CECCs) over GF(4), that are additive and self-orthogonal with respect to the trace Hermitian inner product. But, most of the CECCs have been studied with respect to the Euclidean inner product. In this paper, it is shown that n-length stabilizer QECCs can be constructed via 371 length linear CECCs over GF(2) that are self-orthogonal with respect to the Euclidean inner product. This facilitates usage of the widely studied self-orthogonal CECCs to construct stabilizer QECCs. Moreover, classical, binary, self-orthogonal cyclic codes have been used to obtain stabilizer QECCs with guaranteed quantum error correcting capability. This is facilitated by the fact that (i) self-orthogonal, binary cyclic codes are easily identified using transform approach and (ii) for such codes lower bounds on the minimum Hamming distance are known. Several explicit codes are constructed including two pure MDS QECCs.
Resumo:
A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.
Resumo:
A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.
Resumo:
For point to point multiple input multiple output systems, Dayal-Brehler-Varanasi have proved that training codes achieve the same diversity order as that of the underlying coherent space time block code (STBC) if a simple minimum mean squared error estimate of the channel formed using the training part is employed for coherent detection of the underlying STBC. In this letter, a similar strategy involving a combination of training, channel estimation and detection in conjunction with existing coherent distributed STBCs is proposed for noncoherent communication in Amplify-and-Forward (AF) relay networks. Simulation results show that the proposed simple strategy outperforms distributed differential space-time coding for AF relay networks. Finally, the proposed strategy is extended to asynchronous relay networks using orthogonal frequency division multiplexing.
Resumo:
In this paper, we generalize the existing rate-one space frequency (SF) and space-time frequency (STF) code constructions. The objective of this exercise is to provide a systematic design of full-diversity STF codes with high coding gain. Under this generalization, STF codes are formulated as linear transformations of data. Conditions on these linear transforms are then derived so that the resulting STF codes achieve full diversity and high coding gain with a moderate decoding complexity. Many of these conditions involve channel parameters like delay profile (DP) and temporal correlation. When these quantities are not available at the transmitter, design of codes that exploit full diversity on channels with arbitrary DIP and temporal correlation is considered. Complete characterization of a class of such robust codes is provided and their bit error rate (BER) performance is evaluated. On the other hand, when channel DIP and temporal correlation are available at the transmitter, linear transforms are optimized to maximize the coding gain of full-diversity STF codes. BER performance of such optimized codes is shown to be better than those of existing codes.
Resumo:
Three different algorithms are described for the conversion of Hensel codes to Farey rationals. The first algorithm is based on the trial and error factorization of the weight of a Hensel code, inversion and range test. The second algorithm is deterministic and uses a pair of different p-adic systems for simultaneous computation; from the resulting weights of the two different Hensel codes of the same rational, two equivalence classes of rationals are generated using the respective primitive roots. The intersection of these two equivalence classes uniquely identifies the rational. Both the above algorithms are exponential (in time and/or space).
Resumo:
For the quasi-static, Rayleigh-fading multiple-input multiple-output (MIMO) channel with n(t) transmit and n(r) receive antennas, Zheng and Tse showed that there exists a fundamental tradeoff between diversity and spatial-multiplexing gains, referred to as the diversity-multiplexing gain (D-MG) tradeoff. Subsequently, El Gamal, Caire, and Damen considered signaling across the same channel using an L-round automatic retransmission request (ARQ) protocol that assumes the presence of a noiseless feedback channel capable of conveying one bit of information per use of the feedback channel. They showed that given a fixed number L of ARQ rounds and no power control, there is a tradeoff between diversity and multiplexing gains, termed the diversity-multiplexing-delay (DMD) tradeoff. This tradeoff indicates that the diversity gain under the ARQ scheme for a particular information rate is considerably larger than that obtainable in the absence of feedback. In this paper, a set of sufficient conditions under which a space-time (ST) code will achieve the DMD tradeoff is presented. This is followed by two classes of explicit constructions of ST codes which meet these conditions. Constructions belonging to the first class achieve minimum delay and apply to a broad class of fading channels whenever n(r) >= n(t) and either L/n(t) or n(t)kslashL. The second class of constructions do not achieve minimum delay, but do achieve the DMD tradeoff of the fading channel for all statistical descriptions of the channel and for all values of the parameters n(r,) n(t,) L.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.
Resumo:
Certain ternary codes having good autocorrelation properties akin to Barker codes are described.
Resumo:
Certain binary codes having good autocorrelation properties akin to Barker codes are studied.
Resumo:
A method that yields optical Barker codes of smallest known lengths for given discrimination is described.