4 resultados para MDPS

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their non-stationarity, finite-horizon Markov decision processes (FH-MDPs) have one probability transition matrix per stage. Thus the curse of dimensionality affects FH-MDPs more severely than infinite-horizon MDPs. We propose two parametrized 'actor-critic' algorithms to compute optimal policies for FH-MDPs. Both algorithms use the two-timescale stochastic approximation technique, thus simultaneously performing gradient search in the parametrized policy space (the 'actor') on a slower timescale and learning the policy gradient (the 'critic') via a faster recursion. This is in contrast to methods where critic recursions learn the cost-to-go proper. We show w.p 1 convergence to a set with the necessary condition for constrained optima. The proposed parameterization is for FHMDPs with compact action sets, although certain exceptions can be handled. Further, a third algorithm for stochastic control of stopping time processes is presented. We explain why current policy evaluation methods do not work as critic to the proposed actor recursion. Simulation results from flow-control in communication networks attest to the performance advantages of all three algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop extensions of the Simulated Annealing with Multiplicative Weights (SAMW) algorithm that proposed a method of solution of Finite-Horizon Markov Decision Processes (FH-MDPs). The extensions developed are in three directions: a) Use of the dynamic programming principle in the policy update step of SAMW b) A two-timescale actor-critic algorithm that uses simulated transitions alone, and c) Extending the algorithm to the infinite-horizon discounted-reward scenario. In particular, a) reduces the storage required from exponential to linear in the number of actions per stage-state pair. On the faster timescale, a 'critic' recursion performs policy evaluation while on the slower timescale an 'actor' recursion performs policy improvement using SAMW. We give a proof outlining convergence w.p. 1 and show experimental results on two settings: semiconductor fabrication and flow control in communication networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article proposes a three-timescale simulation based algorithm for solution of infinite horizon Markov Decision Processes (MDPs). We assume a finite state space and discounted cost criterion and adopt the value iteration approach. An approximation of the Dynamic Programming operator T is applied to the value function iterates. This 'approximate' operator is implemented using three timescales, the slowest of which updates the value function iterates. On the middle timescale we perform a gradient search over the feasible action set of each state using Simultaneous Perturbation Stochastic Approximation (SPSA) gradient estimates, thus finding the minimizing action in T. On the fastest timescale, the 'critic' estimates, over which the gradient search is performed, are obtained. A sketch of convergence explaining the dynamics of the algorithm using associated ODEs is also presented. Numerical experiments on rate based flow control on a bottleneck node using a continuous-time queueing model are performed using the proposed algorithm. The results obtained are verified against classical value iteration where the feasible set is suitably discretized. Over such a discretized setting, a variant of the algorithm of [12] is compared and the proposed algorithm is found to converge faster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of finding optimal energy sharing policies that maximize the network performance of a system comprising of multiple sensor nodes and a single energy harvesting (EH) source. Sensor nodes periodically sense the random field and generate data, which is stored in the corresponding data queues. The EH source harnesses energy from ambient energy sources and the generated energy is stored in an energy buffer. Sensor nodes receive energy for data transmission from the EH source. The EH source has to efficiently share the stored energy among the nodes to minimize the long-run average delay in data transmission. We formulate the problem of energy sharing between the nodes in the framework of average cost infinite-horizon Markov decision processes (MDPs). We develop efficient energy sharing algorithms, namely Q-learning algorithm with exploration mechanisms based on the epsilon-greedy method as well as upper confidence bound (UCB). We extend these algorithms by incorporating state and action space aggregation to tackle state-action space explosion in the MDP. We also develop a cross entropy based method that incorporates policy parameterization to find near optimal energy sharing policies. Through simulations, we show that our algorithms yield energy sharing policies that outperform the heuristic greedy method.