9 resultados para Méthode hybride FEM-TMM
em Indian Institute of Science - Bangalore - Índia
Resumo:
A beam-column resting on continuous Winkler foundation and discrete elastic supports is considered. The beam-column is of variable cross-section and the variation of sectional properties along the axis of the beam-column is deterministic. Young's modulus, mass per unit length and distributed axial loadings of the beam-column have a stochastic distribution. The foundation stiffness coefficient of the Winkler model, the stiffnesses of discrete elastic supports, stiffnesses of end springs and the end thrust, are all considered as random parameters. The material property fluctuations and distributed axial loadings are considered to constitute independent, one-dimension uni-variate homogeneous real stochastic fields in space. The foundation stiffness coefficient, stiffnesses of the discrete elastic supports, stiffnesses of end springs and the end thrust are considered to constitute independent random variables. Static response, free vibration and stability behaviour of the beam-column are studied. Hamilton's principle is used to formulate the problem using stochastic FEM. Sensitivity vectors of the response and stability parameters are evaluated. Using these statistics of free vibration frequencies, mode shapes, buckling parameters, etc., are evaluated. A numerical example is given.
Resumo:
A Finite Element Method based forward solver is developed for solving the forward problem of a 2D-Electrical Impedance Tomography. The Method of Weighted Residual technique with a Galerkin approach is used for the FEM formulation of EIT forward problem. The algorithm is written in MatLAB7.0 and the forward problem is studied with a practical biological phantom developed. EIT governing equation is numerically solved to calculate the surface potentials at the phantom boundary for a uniform conductivity. An EIT-phantom is developed with an array of 16 electrodes placed on the inner surface of the phantom tank filled with KCl solution. A sinusoidal current is injected through the current electrodes and the differential potentials across the voltage electrodes are measured. Measured data is compared with the differential potential calculated for known current and solution conductivity. Comparing measured voltage with the calculated data it is attempted to find the sources of errors to improve data quality for better image reconstruction.
Resumo:
The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.
Resumo:
We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.
Resumo:
Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.
Resumo:
The DMS-FEM, which enables functional approximations with C(1) or still higher inter-element continuity within an FEM-based meshing of the domain, has recently been proposed by Sunilkumar and Roy [39,40]. Through numerical explorations on linear elasto-static problems, the method was found to have conspicuously superior convergence characteristics as well as higher numerical stability against locking. These observations motivate the present study, which aims at extending and exploring the DMS-FEM to (geometrically) nonlinear elasto-static problems of interest in solid mechanics and assessing its numerical performance vis-a-vis the FEM. In particular, the DMS-FEM is shown to vastly outperform the FEM (presently implemented through the commercial software ANSYS (R)) as the former requires fewer linearization and load steps to achieve convergence. In addition, in the context of nearly incompressible nonlinear systems prone to volumetric locking and with no special numerical artefacts (e.g. stabilized or mixed weak forms) employed to arrest locking, the DMS-FEM is shown to approach the incompressibility limit much more closely and with significantly fewer iterations than the FEM. The numerical findings are suggestive of the important role that higher order (uniform) continuity of the approximated field variables play in overcoming volumetric locking and the great promise that the method holds for a range of other numerically ill-conditioned problems of interest in computational structural mechanics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The smooth DMS-FEM, recently proposed by the authors, is extended and applied to the geometrically nonlinear and ill-posed problem of a deformed and wrinkled/slack membrane. A key feature of this work is that three-dimensional nonlinear elasticity equations corresponding to linear momentum balance, without any dimensional reduction and the associated approximations, directly serve as the membrane governing equations. Domain discretization is performed with triangular prism elements and the higher order (C1 or more) interelement continuity of the shape functions ensures that the errors arising from possible jumps in the first derivatives of the conventional C0 shape functions do not propagate because the ill-conditioned tangent stiffness matrices are iteratively inverted. The present scheme employs no regularization and exhibits little sensitivity to h-refinement. Although the numerically computed deformed membrane profiles do show some sensitivity to initial imperfections (nonplanarity) in the membrane profile needed to initiate transverse deformations, the overall patterns of the wrinkles and the deformed shapes appear to be less so. Finally, the deformed profiles, computed through the DMS FEM-based weak formulation, are compared with those obtained through an experiment on an ultrathin Kapton membrane, wherein wrinkles form because of the applied boundary displacement conditions. Comparisons with a reported experiment on a rectangular membrane are also provided. These exercises lend credence to the feasibility of the DMS FEM-based numerical route to computing post-wrinkled membrane shapes. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method. (C) 2012 Elsevier B.V. All rights reserved.