5 resultados para Méthode de Frobenius
em Indian Institute of Science - Bangalore - Índia
Resumo:
This Paper deals with the analysis of liquid limit of soils, an inferential parameter of universal acceptance. It has been undertaken primarily to re-examine one-point methods of determination of liquid limit water contents. It has been shown by basic characteristics of soils and associated physico-chemical factors that critical shear strengths at liquid limit water contents arise out of force field equilibrium and are independent of soil type. This leads to the formation of a scientific base for liquid limit determination by one-point methods, which hitherto was formulated purely on statistical analysis of data. Available methods (Norman, 1959; Karlsson, 1961; Clayton & Jukes, 1978) of one-point liquid limit determination have been critically re-examined. A simple one-point cone penetrometer method of computing liquid limit has been suggested and compared with other methods. Experimental data of Sherwood & Ryley (1970) have been employed for comparison of different cone penetration methods. Results indicate that, apart from mere statistical considerations, one-point methods have a strong scientific base on the uniqueness of modified flow line irrespective of soil type. Normalized flow line is obtained by normalization of water contents by liquid limit values thereby nullifying the effects of surface areas and associated physico-chemical factors that are otherwise reflected in different responses at macrolevel.Cet article traite de l'analyse de la limite de liquidité des sols, paramètre déductif universellement accepté. Cette analyse a été entreprise en premier lieu pour ré-examiner les méthodes à un point destinées à la détermination de la teneur en eau à la limite de liquidité. Il a été démontré par les caractéristiques fondamentales de sols et par des facteurs physico-chimiques associés que les résistances critiques à la rupture au cisaillement pour des teneurs en eau à la limite de liquidité résultent de l'équilibre des champs de forces et sont indépendantes du type de sol concerné. On peut donc constituer une base scientifique pour la détermination de la limite de liquidité par des méthodes à un point lesquelles, jusqu'alors, n'avaient été formulées que sur la base d'une analyse statistique des données. Les méthodes dont on dispose (Norman, 1959; Karlsson, 1961; Clayton & Jukes, 1978) pour la détermination de la limite de liquidité à un point font l'objet d'un ré-examen critique. Une simple méthode d'analyse à un point à l'aide d'un pénétromètre à cône pour le calcul de la limite de liquidité a été suggérée et comparée à d'autres méthodes. Les données expérimentales de Sherwood & Ryley (1970) ont été utilisées en vue de comparer différentes méthodes de pénétration par cône. En plus de considérations d'ordre purement statistque, les résultats montrent que les méthodes de détermination à un point constituent une base scientifique solide en raison du caractère unique de la ligne de courant modifiée, quel que soit le type de sol La ligne de courant normalisée est obtenue par la normalisation de la teneur en eau en faisant appel à des valeurs de limite de liquidité pour, de cette manière, annuler les effets des surfaces et des facteurs physico-chimiques associés qui sans cela se manifesteraient dans les différentes réponses au niveau macro.
Resumo:
Détermination de l'activité du calcium par la méthode d'effusion de Knudsen. Calcul, à partir de la distribution mesurée pour l'aluminium entre l'alliage et du fer pur, de l'activité de l'aluminium dans des alliages riches en calcium. Détermination en combinant les deux méthodes, des activités des deux composants et de l'énergie de Gibbs de mélange pour tout le domaine de composition. Calcul et analyse du facteur de structure concentration-concentration
Resumo:
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Infinite horizon discounted-cost and ergodic-cost risk-sensitive zero-sum stochastic games for controlled Markov chains with countably many states are analyzed. Upper and lower values for these games are established. The existence of value and saddle-point equilibria in the class of Markov strategies is proved for the discounted-cost game. The existence of value and saddle-point equilibria in the class of stationary strategies is proved under the uniform ergodicity condition for the ergodic-cost game. The value of the ergodic-cost game happens to be the product of the inverse of the risk-sensitivity factor and the logarithm of the common Perron-Frobenius eigenvalue of the associated controlled nonlinear kernels. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.