18 resultados para Lymphocyte T CD8
em Indian Institute of Science - Bangalore - Índia
Resumo:
Backgrond: Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation.
Resumo:
T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.
Resumo:
Maternal tolerance to the semi-allogenic fetus is brought about by several mechanisms in humans Glycodelin A (GdA) secreted by the uterine mucosa and decidua is induced to high levels by progesterone between 12 and 16 weeks of pregnancy The glycoprotein an immunomodulator has been shown to be inhibitory to the survival and functions of almost all the immune cells CD8(+) T cells which predominate the T lymphocyte population in the decidua are relatively less studied We attempted to find out the possible mechanism if any of regulation of the cytolytic function of CD8(+) T cells during pregnancy Alloactivated CD8(+) T cells harbouring specific cytolytic activity against target cells exhibited compromised activity upon treatment with high concentrations of GdA Interestingly unlike the CD4(+) T cells CD8(+) T cells were resistant to GdA-induced apoptosis The inhibition of cytotoxic T lymphocyte activity was brought about by the downregulation of transcription of the cytolytic effector molecules granzyme B and perform and the degranulation of cytolytic vesicles These results suggest a protective role played by GdA during pregnancy by regulating the cytolytic activity of CD8(+) T cells (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The costimulatory receptors CD28 and cytotoxic T-lymphocyte antigen (CTLA)-4 and their ligands, CD80 and CD86, are expressed on T lymphocytes; however, their functional roles during T cell-T cell interactions are not well known. The consequences of blocking CTLA-4-CD80/CD86 interactions on purified mouse CD4(+) T cells were studied in the context of the strength of signal (SOS). CD4(+) T cells were activated with phorbol 12-myristate 13-acetate (PMA) and different concentrations of a Ca2+ ionophore, Ionomycin (I), or a sarcoplasmic Ca2+ ATPase inhibitor, Thapsigargin (TG). Increasing concentrations of I or TG increased the amount of interleukin (IL)-2, reflecting the conversion of a low to a high SOS. During activation with PMA and low amounts of I, intracellular concentrations of calcium ([Ca2+](i)) were greatly reduced upon CTLA-4-CD80/CD86 blockade. Further experiments demonstrated that CTLA-4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of I or TG (high SOS) but the opposite occurred with PMA and low amounts of I or TG (low SOS). These results were confirmed by surface T-cell receptor (TCR)-CD3 signalling using a low SOS, for example soluble anti-CD3, or a high SOS, for example plate-bound anti-CD3. Also, CTLA-4-CD80/CD86 interactions enhanced the generation of reactive oxygen species (ROS). Studies with catalase revealed that H2O2 was required for IL-2 production and cell cycle progression during activation with a low SOS. However, the high amounts of ROS produced during activation with a high SOS reduced cell cycle progression. Taken together, these results indicate that [Ca2+](i) and ROS play important roles in the modulation of T-cell responses by CTLA-4-CD80/CD86 interactions.
Resumo:
The relay hypothesis [R. Nayak, S. Mitra-Kaushik, M.S. Shaila, Perpetuation of immunological memory: a relay hypothesis, Immunology 102 (2001) 387-395] was earlier proposed to explain perpetuation of immunological memory without requiring long lived memory cells or persisting antigen. This hypothesis envisaged cycles of interaction and proliferation of complementary idiotypic B cells (Burnet cells) and anti-idiotypic B cells (Jerne cells) as the primary reason for perpetuation of immunological memory. The presence of pepti-domimics of antigen in anti-idiotypic antibody and their presentation to antigen specific T cells was postulated to be primary reason for perpetuation of T cell memory. Using a viral hemagglutinin as a model, in this work, we demonstrate the presence of peptidomimics in the variable region of ail anti-idiotypic antibody capable of functionally mimicking the antigen derived peptides. A CD8(+) CTL clone was generated against the hemagglutinin protein which specifically responds to either peptidomimic synthesizing cells or peptidomimic pulsed antigen presenting cells. Thus, it appears reasonable that a population of activated antigen specific T cells is maintained in the body by presentation of peptidomimic through Jerne cells and other antigen presenting cells long after immunization. (C) 2007 Elsevier Inc. All rights reserved.
Replication of Japanese encephalitis virus in mouse brain induces alterations in lymphocyte response
Resumo:
The experimental model using intracerebral (i.c.) challenge was employed in many studies evaluating the protection against disease induced by Japanese encephalitis virus (JEV). We investigated alterations in peripheral lymphocyte response caused by i.c. infection of mice with JEV. Splenocytes from the i.c.-infected mice showed suppressed proliferative response to concanavalin A (con A) and anti-CD3 antibody stimulation. At the same time, the expression of CD25 (IL-2R) and production of IL-2 was inhibited. Addition of anti-CD28 antibody restored the decreased anti-CD3 antibody-mediated proliferation in the splenocytes. Moreover, the number of con A-stimulated cells secreting IL-4 was significantly reduced in splenocytes from i.c.-infected mice. These studies suggested that the i.c. infection with JEV might involve additional immune modulation effects due to massive virus replication in the brain.
Resumo:
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.
Resumo:
The progesterone-regulated glycoprotein glycodelin-A (GdA), secreted by the decidualized endometrium at high concentrations in primates, inhibits the maternal immune response against fetal antigens and thereby contributes to the tolerance of the semi-allogenic fetus during a normal pregnancy. Our earlier studies demonstrated the ability of GdA to induce an intrinsic apoptotic cascade in CD4 T-lymphocytes and suppress the cytolytic effector function of CD8 T-lymphocytes. In this report, we investigated further into the mechanism of action of GdA controlling perforin and granzyme B expression in CD8 T-lymphocytes and the mechanism of action of GdA leading to lymphocyte death. Flow cytometry analysis was performed to check for the surface expression of interleukin-2 receptor (IL-2R) and intracellular eomesodermin (Eomes) in activated T-lymphocytes, whereas quantitative RTPCR analysis was used to find out their mRNA profile upon GdA treatment. Western analysis was carried out to confirm the protein level of Bax and Bcl-2. GdA reduces the surface expression of the high-affinity IL-2R complex by down-regulating the synthesis of IL-2R (CD25). This disturbs the optimal IL-2 signalling and decreases the Eomes expression, which along with IL-2 directly regulates perforin and granzymes expression. Consequently, the CD8 T-lymphocytes undergo growth arrest and are unable to mature into competent cytotoxic T-lymphocytes. In the CD4 T-lymphocytes, growth factor IL-2 deprivation leads to proliferation inhibition, decreased Bcl-2/enhanced Bax expression, culminating in mitochondrial stress and cell death. GdA spurs cell cycle arrest, loss of effector functions and apoptosis in different T-cell subsets by making T-lymphocytes unable to respond to IL-2.
Resumo:
Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S.typhimurium). Significant death of CD4+CD8+ thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4+CD8+ thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon- (IFN-), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifn/ mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN- and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifn/ mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifn/ mice. Importantly, the number of CD4+CD8+ thymocytes is significantly higher in Ifn/ mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN--mediated pathways are parallel but synergize in an additive manner to induce death of CD4+CD8+ thymocytes during S.typhimurium infection. The implications of this study for host responses during infection are discussed.
Resumo:
We previously reported that Rv1860 protein from Mycobacterium tuberculosis stimulated CD4(+) and CD8(+) T cells secreting gamma interferon (IFN-gamma) in healthy purified protein derivative (PPD)-positive individuals and protected guinea pigs immunized with a DNA vaccine and a recombinant poxvirus expressing Rv1860 from a challenge with virulent M. tuberculosis. We now show Rv1860-specific polyfunctional T (PFT) cell responses in the blood of healthy latently M. tuberculosis-infected individuals dominated by CD8(+) T cells, using a panel of 32 overlapping peptides spanning the length of Rv1860. Multiple subsets of CD8(+) PFT cells were significantly more numerous in healthy latently infected volunteers (HV) than in tuberculosis (TB) patients (PAT). The responses of peripheral blood mononuclear cells (PBMC) from PAT to the peptides of Rv1860 were dominated by tumor necrosis factor alpha (TNF-alpha) and interleukin-10 (IL-10) secretions, the former coming predominantly from non-T cell sources. Notably, the pattern of the T cell response to Rv1860 was distinctly different from those of the widely studied M. tuberculosis antigens ESAT-6, CFP-10, Ag85A, and Ag85B, which elicited CD4(+) T cell-dominated responses as previously reported in other cohorts. We further identified a peptide spanning amino acids 21 to 39 of the Rv1860 protein with the potential to distinguish latent TB infection from disease due to its ability to stimulate differential cytokine signatures in HV and PAT. We suggest that a TB vaccine carrying these and other CD8(+) T-cell-stimulating antigens has the potential to prevent progression of latent M. tuberculosis infection to TB disease.
Resumo:
The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.
Resumo:
Glycodelin A (GdA) is one of the progesterone inducible endometrial factors that protect the fetal semiallograft from maternal immune rejection. The immumoregulatory effects of GdA are varied, with diverse effects on the fate and function of most immune cell types. Its effects on T cells are particularly relevant as it is capable of regulating T cell activation, differentiation, as well as apoptosis. We have previously reported that GdA triggers mitochondrial stress and apoptosis in activated T cells by a mechanism that is distinct and independent of its effects on T cell activation. In this study we describe the characterization of a cell surface receptor for GdA on T cells. Our results reveal a novel calcium-independent galactose-binding lectin activity of GdA, which is responsible for its apoptogenic function. This discovery adds GdA to a select group of soluble immunoregulatory lectins that operate within the feto-placental compartment, the only other members being the galectin family proteins. We also report for the first time that both CD4(+) and CD8(+) T cell subsets are equally susceptible to inhibition with GdA, mediated by its novel lectin activity. We demonstrate that GdA selectively recognizes complex-type N-linked glycans on T cell surface glycoproteins. and propose that the galectin-1 glycoprotein receptor CD7 maybe a novel target for GdA on T cells. This study, for the first time, links the lectin activity of GdA to its biological function.
Resumo:
The granule exocytosis cytotoxicity pathway is the major molecular mechanism for cytotoxic T lymphocyte (CTL) and natural killer (NK) cytotoxicity, but the question of how these cytotoxic lymphocytes avoid self-destruction after secreting perforin has remained unresolved. We show that CTL and NK cells die within a few hours if they are triggered to degranulate in the presence of nontoxic thiol cathepsin protease inhibitors. The potent activity of the impermeant, highly cathepsin B-specific membrane inhibitors CA074 and NS-196 strongly implicates extracellular cathepsin B. CTL suicide in the presence of cathepsin inhibitors requires the granule exocytosis cytotoxicity pathway, as it is normal with CTLs from gld mice, but does not occur in CTLs from perforin knockout mice. Flow cytometry shows that CTLs express low to undetectable levels of cathepsin B on their surface before degranulation, with a substantial rapid increase after T cell receptor triggering. Surface cathepsin B eluted from live CTL after degranulation by calcium chelation is the single chain processed form of active cathepsin B. Degranulated CTLs are surface biotinylated by the cathepsin B-specific affinity reagent NS-196, which exclusively labels immunoreactive cathepsin B. These experiments support a model in which granule-derived surface cathepsin B provides self-protection for degranulating cytotoxic lymphocytes.
Resumo:
Mycobacterium indicus pranii (MIP) is approved for use as an adjuvant (Immuvac/Cadi-05) in the treatment of leprosy. In addition, its efficacy is being investigated in clinical trials on patients with tuberculosis and different tumors. To evaluate and delineate the mechanisms by which autoclaved MIP enhances anti-tumor responses, the growth of solid tumors consisting of Sp2/0 (myeloma) and EL4 (thymoma) cells was studied in BALB/c and C57BL/6 mice, respectively. Treatment of mice with a single intra-dermal (i.d.) injection of MIP 3 days after Sp2/0 implantation greatly suppresses tumor growth. MIP treatment of tumor bearing mice lowers Interleukin (IL)6 but increases IL12p70 and IFN? amounts in sera. Also, increase in CD8+ T cell mediated lysis of specific tumor targets and production of high amounts of IL2 and IFN? by CD4+ T cells upon stimulation with specific tumor antigens in MIP treated mice is observed. Furthermore, MIP is also effective in reducing the growth of EL4 tumors; however, this efficacy is reduced in Ifn?-/- mice. In fact, several MIP mediated anti-tumor responses are greatly abrogated in Ifn?-/- mice: increase in serum Interleukin (IL)12p70 amounts, induction of IL2 and lysis of EL4 targets by splenocytes upon stimulation with specific tumor antigens. Interestingly, tumor-induced increase in serum IL12p70 and IFN? and reduction in growth of Sp2/0 and EL4 tumors by MIP are not observed in nonobese diabetic severe combined immunodeficiency mice. Overall, our study clearly demonstrates the importance of a functional immune network, in particular endogenous CD4+ and CD8+ T cells and IFN?, in mediating the anti-tumor responses by MIP.