24 resultados para Lycopersicon esculentum Mill

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen-fixing bacterial isolate from the intercellular spaces of tomato root cortical cells was studied for the location of nif genes on the chromosomal or plasmid DNA. The bacterial isolate showed two plasmids of approximate molecular sizes of 220 and 120 kb. Klebsiella pneumoniae nif HDK probe hybridized with the chromosomal DNA and not with the plasmid DNA thereby showing that nif genes are localised on the chromosomal DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory results of marked-ball wear tests are used to discuss the relative significance of corrosive and abrasive wear in wet grinding. The electrochemical mechanism was investigated by correlating the corrosive wear with the corrosion current obtained from polarization curves under abrasion. Slurry rheology governs the manner in which ground slurries coat grinding balls, thereby influencing not only the grinding efficiency but also abrasive wear. The effects of percent solids and a grinding aid are illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy is a major constituent of a small-scale industry such as grain mills. Based on a sample survey of several mills spread over Karnataka, a state in India, a number of energy analyses were conducted primarily to establish relationships and secondarily to look at them in more detail. Initially specific energy consumption (SEC) was computed for all industries so as to compare their efficiencies of energy use. A wide disparity exists in SEC among various grain mills. In order to understand the disparities better, regression analyses were performed on the variables energy and production, SEC and production, and energy/SEC with percentage production capacity utilization. The studies show that smaller range industries have lower capacity utilization. This paper also examines the energy savings possible by shifting industries from the lower production ranges to the next higher range (thereby utilizing installed production capacity optimally). This leads to an overall energy capacity saving of 23.12% for the foodgrain sector and 18.67% for the paddy dehusking subgroup. If this is extrapolated to the whole state, we obtain a saving of 55 million kWh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the development of a new model for the cooling process on the runout table of hot strip mills, The suitability of different numerical methods for the solution of the proposed model equation from the point of view of accuracy and computation time are studied, Parallel solutions for the model equation are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work involving the squeeze-film flow of a model paste substance, a mixture of clay particles and mineral oil commonly known as ‘Plasticine’, has suggested that it behaves as a simple Herschel-Bulkley fluid which exhibits little strain history. However, tensile measurements, which are naturally limited to small strains by the onset of necking, indicate that this material shows strain hardening. A two roll-mill is employed here to investigate the influence of larger extensional strains. The data are analysed using an available first order engineering plasticity solution. The results confirm that this material exhibits both extensional strain and strain rate hardening. This observed strain hardening effect, which is not observed in the squeeze-film experiments, is attributed, in part, to the more homogeneous deformation fields induced during rolling and tensile extension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently developed reference-command tracking version of model predictive static programming (MPSP) is successfully applied to a single-stage closed grinding mill circuit. MPSP is an innovative optimal control technique that combines the philosophies of model predictive control (MPC) and approximate dynamic programming. The performance of the proposed MPSP control technique, which can be viewed as a `new paradigm' under the nonlinear MPC philosophy, is compared to the performance of a standard nonlinear MPC technique applied to the same plant for the same conditions. Results show that the MPSP control technique is more than capable of tracking the desired set-point in the presence of model-plant mismatch, disturbances and measurement noise. The performance of MPSP and nonlinear MPC compare very well, with definite advantages offered by MPSP. The computational speed of MPSP is increased through a sequence of innovations such as the conversion of the dynamic optimization problem to a low-dimensional static optimization problem, the recursive computation of sensitivity matrices and using a closed form expression to update the control. To alleviate the burden on the optimization procedure in standard MPC, the control horizon is normally restricted. However, in the MPSP technique the control horizon is extended to the prediction horizon with a minor increase in the computational time. Furthermore, the MPSP technique generally takes only a couple of iterations to converge, even when input constraints are applied. Therefore, MPSP can be regarded as a potential candidate for online applications of the nonlinear MPC philosophy to real-world industrial process plants. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sn-Ag-Cu (SAC) solder alloys are the best Pb free alternative for electronic industry. Since their introduction, efforts are made to improve their efficacies by tuning the processing and composition to achieve lower melting point and better wettability. Nanostructured alloys with large boundary content are known to depress the melting points of metals and alloys. In this article we explore this possibility by processing prealloyed SAC alloys close to SAC305 composition (Sn-3wt%Ag-0.5wt%Cu) by mechanical milling which results in the formation of nanostructured alloys. Pulverisette ball mill (P7) and Vibratory ball mills are used to carry out the milling of the powders at room temperature and at lower temperatures (-104 A degrees C), respectively. We report a relatively smaller depression of melting point ranging up to 5 A degrees C with respect to original alloys. The minimum grain sizes achieved and the depression of melting point are similar for both room temperature and low-temperature processed samples. An attempt has been made to rationalize the observations in terms of the basic processes occurring during the milling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marked-ball grinding tests were carried out under different grinding conditions and environments. Three types of balls were used, namely, cast hyper steel, high chrome cast iron and EN-31 (forged), which cover a wide range of chemical composition, microstructure and media hardness. The effect of pulp density on ball wear and grinding efficiency was also studied. Relative pulp viscosities at different percent solids for the ore slurry were also determined. As the Kudremukh ore contained about 0.2% pyrite, the effect of addition of pyrite on ball wear was studied separately. Results of marked-ball grinding tests indicated that ball wear increased with time and showed a sharp increase for wet grinding over dry grinding. Ball wear under wet grinding conditions was also influenced by the gaseous atmosphere in the mill. At 70% solids, the best results in terms of reduced ball wear coupled with satisfactory grinding efficiency were obtained. The influence of oxygen on the corrosive wear of grinding balls was increasingly felt only if sulphide minerals such as pyrite were also present in the ore. The various ball materials could be arranged in the following order with respect to their overall wear resistance: high chrome cast iron > EN-31 (forged) > cast hyper steel.Possible ball wear mechanisms involved in the grinding of Kudremukh ore are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rate of breakage of feed in ball milling is usually represented in the form of a first-order rate equation. The equation was developed by treating a simple batch test mill as a well mixed reactor. Several case of deviation from the rule have been reported in the literature. This is attributed to the fact that accumulated fines interfere with the feed material and breaking events are masked by these fines. In the present paper, a new rate equation is proposed which takes into account the retarding effect of fines during milling. For this purpose the analogy of diffusion of ions through permeable membranes is adopted, with suitable modifications. The validity of the model is cross checked with the data obtained in batch grinding of ?850/+600 ?m size quartz. The proposed equation enables calculation of the rate of breakage of the feed at any instant of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marked ball grinding tests were carried out in the laboratory with a lead-zinc sulphide ore under different experimental conditions using high carbon low alloy steel (cast and forged) and high chrome cast iron balls. Relative ball wear as a function of grinding period and milling conditions was evaluated for the different types of ball materials. The role of corrosion and abrasion-erosion in the wear of grinding media is brought out. Methods to minimise ball wear through control of mill atmosphere and addition of reagents are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grinding media wear appears to be non-linear with the time of grinding in a laboratory-scale ball mill. The kinetics of wear can be expressed as a power law of the type w=atb, where the numerical constant a represents wear of a particular microstructure at time t = 1 min and b is the wear exponent which is independent of the particle size prevailing inside a ball mill at any instant of time of grinding. The wear exponent appears to be an indicator of the cutting wear mechanism in dry grinding: a plot of the inverse of the normalised wear exponent (Image ) versusHs (where Hs is the worn surface hardness of the media) yields a curve similar to that of a wear resistance plot obtained in the case of two-body sliding abrasive wear. This method of evaluating the cutting wear resistance of media is demonstrated by employing 15 different microstructures of AISI-SAE 52100 steel balls in dry grinding of quartz in a laboratory-scale ball mill.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the synthesis structures and dielectric properties of new perovskite oxides of the formula (Ba3MTiMO9)-Ti-III-O-V for M-III = Fe Ga Y Lu and M-V = Nb Ta Sb While M-V = Nb and Ta oxides adopt disordered/partially ordered 3C perovskite structures where M-III/Ti/M-V metal-oxygen octahedra are corner connected the M-V = Sb oxides show a distinct preference for the 6H structure where Sb-V/Ti-IV metal-oxygen octahedra share a common face forming (Sb Ti)O-9 dimers that are corner-connected to the (MO6)-O-III octahedra The preference of antimony oxides (Sb-V 4d(10)) for the 6H structure which arises from a special Sb-V-O chemical bonding that tends to avoid linear Sb-O-Sb linkages unlike Nb-V/Ta-V d(0) atoms which prefer similar to 180 degrees Nb/Ta-O-Nb/Ta linkages - is consistent with the crystal chemistry of M-V-O oxides in general The dielectric properties reveal a significant difference among Mill members All the oxides with the 3C structure excepting those with Mill = Fe show a normal low loss dielectric behaviour with epsilon = 20-60 in the temperature range 50-400 degrees C the M-III = Fe members with this structure (M-V = Nb Ta) display a relaxor-like ferroelectric behaviour with large E values at frequencies <= 1 MHz (50-500 degrees C) (C) 2010 Elsevier Masson SAS All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type of abrasion that the grinding medium experiences inside a ball mill is classified as high stress or grinding abrasion, because the stress levels at the surface of the medium exceed the yield stress of the metal when hard abrasives are crushed. During dry grinding of ores the medium undergoes not only abrasion but also erosion and impact. As all three mechanisms of wear occur simultaneously, it is difficult to follow the individual components of wear. However, it is possible to show that the overall kinetics of wear follows a simple power law of the type w = at(b), where w is the weight loss of the grinding medium for a specified grinding time t and a and b are constants. Experimental data, obtained from dry grinding of quartz for a wide range of times using AISI 52100 steel balls having various microstructures in a laboratory scale batch mill, are fitted to the proposed equation and the wear rate w is calculated from the first derivative of the equation. The mean particle sizes of the quartz charge DBAR corresponding to 50 and 80% retained size are determined by mechanical sieving of the ground product after a grinding time t and thus the relationship between wear rate and particle size of the abrasive is established. It is found that w increases rapidly with DBAR up to some critical size and then increases at a much lower rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marked ball grinding tests were carried out in the laboratory using high carbon low alloy steel (cast and forged) and high chrome cast iron balls. Relative ball wear as a function of grinding period and milling conditions was evaluated for the different type of ball materials in the grinding of lead-zinc sulphide and phosphate ores. Results indicated that ball wear increased with time and showed a sharp increase for wet grinding over dry grinding. Ball wear under wet grinding conditions was also influenced by the gaseous atmosphere in the mill. The influence of oxygen on the corrosive wear of grinding balls was increasingly felt in case of sulphide ore grinding. The grinding ball materials could be arranged in the following order with respect to their overall wear resistance: