41 resultados para Low diversity
em Indian Institute of Science - Bangalore - Índia
Resumo:
The impact of riparian land use on the stream insect communities was studied at Kudremukh National Park located within Western Ghats, a tropical biodiversity hotspot in India. The diversity and community composition of stream insects varied across streams with different riparian land use types. The rarefied family and generic richness was highest in streams with natural semi evergreen forests as riparian vegetation. However, when the streams had human habitations and areca nut plantations as riparian land use type, the rarefied richness was higher than that of streams with natural evergreen forests and grasslands. The streams with scrub lands and iron ore mining as the riparian land use had the lowest rarefied richness. Within a landscape, the streams with the natural riparian vegetation had similar community composition. However, streams with natural grasslands as the riparian vegetation, had low diversity and the community composition was similar to those of paddy fields. We discuss how stream insect assemblages differ due to varied riparian land use patterns, reflecting fundamental alterations in the functioning of stream ecosystems. This understanding is vital to conserve, manage and restore tropical riverine ecosystems.
Resumo:
We consider a slow fading multiple-input multiple-output (MIMO) system with channel state information at both the transmitter and receiver. A well-known precoding scheme is based upon the singular value decomposition (SVD) of the channel matrix, which transforms the MIMO channel into parallel subchannels. Despite having low maximum likelihood decoding (MLD) complexity, this SVD precoding scheme provides a diversity gain which is limited by the diversity gain of the weakest subchannel. We therefore propose X- and Y-Codes, which improve the diversity gain of the SVD precoding scheme but maintain the low MLD complexity, by jointly coding information across a pair of subchannels. In particular, subchannels with high diversity gain are paired with those having low diversity gain. A pair of subchannels is jointly encoded using a 2 2 real matrix, which is fixed a priori and does not change with each channel realization. For X-Codes, these rotation matrices are parameterized by a single angle, while for Y-Codes, these matrices are left triangular matrices. Moreover, we propose X-, Y-Precoders with the same structure as X-, Y-Codes, but with encoding matrices adapted to each channel realization. We observed that X-Codes/Precoders are good for well-conditioned channels, while Y-Codes/Precoders are good for ill-conditioned channels.
Resumo:
The influence of riparian land use on the diversity an~ distribution were investigated by sampling 113 localities covering 4 districts in south-western Karnataka. A total of 55 species in 12 families were recorded. Streams, rivers and lakes had higher diversity than marshes and sea coast. However, lakes had low endemism than streams and rivers. Streams flowing through evergreen forests had higher diversity and endemism. Human impacted riparian zones such as paddy fields had relatively lower species richness. However, streams flowing through forestry plantations had higher diversity than other natural riparian zones such as dry deciduous, moist deciduous and semi evergreen forests. Myristica swamps-a relict evergreen forest marsh had low diversity and high endemism. Odonate communities of lentic ecosystems, and human impacted streams and rivers were characterized by widespread generalist species. Endemics and habitat specialists were. restricted to streams and rivers with undisturbed riparian zone. The study documents possible odonate community change due to human impact: The influence of riparian 'Ianduse change on odonate community is also discussed.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
Resumo:
The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of g-group encodable and g-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.
Resumo:
It is known that by employing space-time-frequency codes (STFCs) to frequency selective MIMO-OFDM systems, all the three diversity viz spatial, temporal and multipath can be exploited. There exists space-time-frequency block codes (STFBCs) designed using orthogonal designs with constellation precoder to get full diversity (Z.Liu, Y.Xin and G.Giannakis IEEE Trans. Signal Processing, Oct. 2002). Since orthogonal designs of rate one exists only for two transmit antennas, for more than two transmit antennas STFBCs of rate-one and full-diversity cannot be constructed using orthogonal designs. This paper presents a STFBC scheme of rate one for four transmit antennas designed using quasi-orthogonal designs along with co-ordinate interleaved orthogonal designs (Zafar Ali Khan and B. Sundar Rajan Proc: ISIT 2002). Conditions on the signal sets that give full-diversity are identified. Simulation results are presented to show the superiority of our codes over the existing ones.
Resumo:
The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of g-group encodable and g-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.
Resumo:
Use of precoding transforms such as Hadamard Transforms and Phase Alteration for Peak to Average Power Ratio (PAPR) reduction in OFDM systems are well known. In this paper we propose use of Inverse Discrete Fourier Transform (IDFT) and Hadamard transform as precoding transforms in MIMO-OFDM systems to achieve low peak to average power ratio (PAPR). We show that while our approach using IDFT does not disturb the diversity gains of the MIMO-OFDM systems (spatial, temporal and frequency diversity gains), it offers a better trade-off between PAPR reduction and ML decoding complexity compared to that of the Hadamard transform precoding. We study in detail the amount of PAPR reduction achieved for the following two recently proposed full-diversity Space-Frequency coded MIMO-OFDM systems using both the IDFT and the Hadamard transform: (i) W. Su. Z. Safar, M. Olfat, K. J. R. Liu (IEEE Trans. on Signal Processing, Nov. 2003), and (ii) W. Su, Z. Safar, K. J. R. Liu (IEEE Trans. on Information Theory, Jan. 2005).
A Low ML-Decoding Complexity, High Coding Gain, Full-Rate, Full-Diversity STBC for 4 x 2 MIMO System
Resumo:
This paper proposes a full-rate, full-diversity space-time block code(STBC) with low maximum likelihood (ML) decoding complexity and high coding gain for the 4 transmit antenna, 2 receive antenna (4 x 2) multiple-input multiple-output (MIMO) system that employs 4/16-QAM. For such a system, the best code known is the DjABBA code and recently, Biglieri, Hong and Viterbo have proposed another STBC (BHV code) for 4-QAM which has lower ML-decoding complexity than the DjABBA code but does not have full-diversity like the DjABBA code. The code proposed in this paper has the same ML-decoding complexity as the BHV code for any square M-QAM but has full-diversity for 4- and 16-QAM. Compared with the DjABBA code, the proposed code has lower ML-decoding complexity for square M-QAM constellation, higher coding gain for 4- and 16-QAM, and hence a better codeword error rate (CER) performance. Simulation results confirming this are presented.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
Recently, Guo and Xia gave sufficient conditions for an STBC to achieve full diversity when a PIC (Partial Interference Cancellation) or a PIC-SIC (PIC with Successive Interference Cancellation) decoder is used at the receiver. In this paper, we give alternative conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. Using these conditions, we construct a new class of full diversity PIC-SIC decodable codes, which contain the Toeplitz codes and a family of codes recently proposed by Zhang, Xu et. al. as proper subclasses. With the help of the new criteria, we also show that a class of PIC-SIC decodable codes recently proposed by Zhang, Shi et. al. can be decoded with much lower complexity than what is reported, without compromising on full diversity.
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.
Resumo:
Systematic investigation on synergetic effects of geometry, length, denticity, and asymmetry of donors was performed through the formation of a series of uncommon Pd-II aggregates by employing the donor in a multicomponent self-assembly of a cis-blocked 90 degrees Pd-II acceptor and a tetratopic donor. Some of these assemblies represent the first examples of these types of structures, and their formation is not anticipated by only taking the geometry of the donor and the acceptor building units into account. Analysis of the crystal packing of the X-ray structure revealed several H bonds between the counteranions (NO3-) and water molecules (OHON). Moreover, H-bonded 3D-networks of water are present in the molecular pockets, which show water-adsorption properties with some variation in water affinity. Interestingly, these complexes exhibit proton conductivity (1.87x10(-5)-6.52x10(-4)Scm(-1)) at 296K and low relative humidity (ca. 46%) with activation energies of 0.29-0.46eV. Moreover, the conductivities further increase with the enhancement of humidity. The ability of these assemblies to exhibit proton-conducting properties under low-humidity conditions makes these materials highly appealing as electrolytes in batteries and in fuel-cell applications.