56 resultados para Low concentrations
em Indian Institute of Science - Bangalore - Índia
Resumo:
The oxidation of aqueous sulfur dioxide in the presence of polymer-supported copper(II) catalyst is also accompanied by homogeneous oxidation of aqueous sulfur dioxide catalyzed by leached copper(II) ions. Aqueous phase oxidation of sulfur dioxide of low concentrations by oxygen in the presence of dissolved copper(II) has therefore been studied. The solubility of SO2 in aqueous solutions is not affected by the concentration of copper(II) in the solution. In the oxidation reaction, only HSO3- is the reactive S(IV) species. Based on this observation a rate model which also incorporates the effect of sulfuric acid on the solubility of SO2 is developed. The rate model includes a power-law type term for the rate of homogeneous phase reaction obtained from a proposed free-radical chain mechanism for the oxidation. Experiments are conducted at various levels of concentrations of SO2 and O-2 in the gas phase and Cu(II) in the liquid phase. The observed orders are one in each of O-2, Cu(II) and HSO3-. This suggests a first-order termination of the free radicals of bisulfite ions.
Resumo:
Orthopyroxene-clinopyroxene-plagioclase needles and symplectite along the cleavage planes and grain boundaries of fluorine-bearing titanian-ferroan pargasite from the Highland Complex, Sri Lanka, are interpreted as evidence for dehydration melting at ultrahigh-temperature conditions. High Ti (up to 0.4 pfu) and F (XF up to 0.56) content in pargasite extends its stability to higher temperatures, and the composition indicates the dehydration melting reaction may take place at ultrahigh-temperatures (~950 °C) at a pressure around 10 kbar, close to peak metamorphic conditions. The increase of Ti content close to the grain boundaries and cleavage planes in pargasite indicates titanium partitioning from the melt during dehydration melting enhanced the stability of the mineral toward ultrahigh-temperature conditions. The REE content in the pargasite shows a similar behavior to that of titanium. The cores with no breakdown assemblage consist of low and flat REE concentrations with respect to the high and Eu-depleted rim. Clinopyroxene in symplectite and needle-shaped lamellae within the pargasite porphyroblasts have similar REE patterns with slightly low-concentrations relative to that of pargasite. In the breakdown assemblage, LREEs are partitioned mainly into plagioclase while the HREEs are partitioned into orthopyroxene. The REE enrichment in the pargasite rims signals their relative partitioning between pargasite rims and melt. Modeling of the partitioning of Ti and REEs associated with pargasite breakdown demonstrates that its stability is greatly enhanced at UHT conditions. This investigation implies that the stability of hydrous minerals such as amphibole can be extended to UHT conditions, and expands our knowledge of metamorphism in the lower crust.
Resumo:
Antibodies raised in rabbits against daoxyguanylate and daoxycytidylate bind to 3H-(lambda) double stranded DNA and the binding is base specific. The concentrations of antibody populations that bind to double stranded DNA are much less than those binding to denatured DNA. Due to their low concentrations, these antibodies ware not detected in earlier studies. These antibodies are expected to be useful to probe the conformational flexibilities of double stranded DNAs.
Resumo:
Combustion behaviour of ammonium perchlorate-potassium perchlorate pellets is studied using Crawford strand burners. At low concentrations of potassium perchlorate (up to 30 percent potassium perchlorate) the burning rate of ammonium perchlorate-potassium perchlorate condensed mixtures increases with potassium perchlorate content. Above 40 percent potassium perchlorate content, combustion sustenance becomes difficult. Decomposition products of ammonium perchlorate sensitize the melting and subsequent decomposition of potassium perchlorate. The results are explained in terms of the melt layer thickness, flame temperature and the resultant surface temperature, and heat wave penetration into the solid. The study suggests the importance of melt layer on the burning surface in the deflagration behaviour of ammonium perchlorate-potassium perchlorate condensed mixtures
Resumo:
The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect. The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 mImage ) and V (3.2) of the native enzyme increased on renaturation to 1.8 mImage and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.
Resumo:
The crystalline mung bean nucleotide pyrophosphatase was inhibited nonlinearly by AMP, one of the products of the reaction. The partially inactive enzyme was specifically reactivated by ADP, and V at maximal activation was the same as that of the native enzyme. ATP was a linear, noncompetitive inhibitor. The kinetic evidence suggested that ADP and ATP might not be reacting at the same site as AMP. The electrophoretic mobility of the enzyme was increased by AMP, whereas ADP and ATP were without effect. The enzyme was denatured on treatment with urea or guanidine hydrochloride. The renatured and the native enzyme had the same pH (9.4) and temperature (49 °C) optimum. The Km (0.2 m ) and V (3.2) of the native enzyme increased on renaturation to 1.8 m and 8.0, respectively. In addition, renaturation resulted in desensitization of the enzyme to inhibition by low concentrations of AMP. Renaturation did not affect the reactivation of the apoenzyme by Zn2+.
Nature of the activation of succinate dehydrogenase byvarious effectors and in hypobaria and hypoxia
Resumo:
Hepatic mitochondrial succinate dehydrogenase (succinate:(acceptor)oxidoreductase, EC 1.3.99.1) was activated by preincubation of mitochondria with four diverse classes of compounds, the dicarboxylic acids, nitrophenols, quinols (and ubiquinols) and pyrophosphates. Of the various compounds tested malonate, oxaloacetate and pyrophosphate, well-known competitive inhibitors of the enzyme, and also hydroquinone and ubiquinols were effective even at low concentrations and showed maximal stimulation in 2 min.
Resumo:
1. 1. Diverse classes of compounds such as dicarboxylates, pyrophosphates, quinols and nitrophenols are known to activate mitochondrial succinate dehydrogenase (EC 1.3.99.1). Examples in each class — malonate, pyrophosphate, ubiquinol and 2,4-dinitrophenol — are selected for comparative studies on the kinetic constants and structural relationship. 2. 2. The activated forms of the enzyme obtained on preincubating mitochondria with the effectors exhibited Michaelian kinetics and gave doublereciprocal plots which are nearly parallel to that of the basal form. On activation, Km for the substrate also increased along with V. The effectors activated the enzyme at low concentrations and inhibited, in a competitive fashion, at high concentrations. The binding constant for activation was lower than that for inhibition for each effector. 3. 3. These compounds possess ionizable twin oxygens separated by a distance of Image and having fractional charges in the range of −0.26 to −0.74 e. The common twin-oxygen feature of the substrate and the effectors suggested the presence of corresponding counter charges in the binding domain. The competitive nature of effectors with the substrate for inhibition further indicated the close structural resemblance of the activation and catalytic sites.
Resumo:
Kinetic studies of macromolecular ligand-ligate interaction have generated ample interest since the advent of plasmon resonance based instruments like BIAcore. Most of the studies reported in literature assume a simple 1 : 1 Langmuir binding and complete reversibility of the system. However we observed that in a high affinity antigen-antibody system [human chorionic gonadotropin-monoclonal antibody (hCG-mAb)] dissociation is insignificant and the sensogram data cannot be used to measure the equilibrium and kinetic parameters. At low concentrations of mAb the complete sensogram could be fitted to a single exponential. Interestingly we found that at higher mAb concentrations, the binding data did not conform to a simple bimolecular model. Instead, the data fitted a two-step model, which may be because of surface heterogeneity of affinity sites. In this paper, we report on the global fit of the sensograms. We have developed a method by which a single two-minute sensogram can be used in high affinity systems to measure the association rate constant of the reaction and the functional capacity of the ligand (hCG) immobilized on the chip. We provide a rational explanation for the discrepancies generally observed in most of the BIAcore sensograms
Resumo:
Electrochemical reduction of hydrogen peroxide is studied on a sand-blasted stainless steel (SSS)electrode in an aqueous solution of NaClO4.The cyclic voltammetric reduction of H2O2 at low concentrations is characterized by a cathodic peak at -0 center dot 40 V versus standard calomel electrode(SCE).Cyclic voltammetry is studied by varying the concentration of H2O2 in the range from 0 center dot 2 mM to 20 mM and the sweep rate in the range from 2 to 100 mV s(-1)Voltammograms at concentrations of H2O2 higher than 2 mM or at high sweep rates consist of an additional current peak, which may be due to the reduction of adsorbed species formed during the reduction of H2O2. Amperometric determination of H2O2 at -0 center dot 50 V vs SCEprovides the detection limit of 5 A mu M H2O2. A plot of current density versus concentration has two segments suggesting a change in the mechanism of H2O2 reduction at concentrations of H2O2 a parts per thousand yen 2 mM. From the rotating disc electrode study, diffusion co-efficient of H2O2 and rate constant for reduction of H2O2 are evaluated.
Resumo:
The carbohydrate residues of glycosphingolipids were implicated in many biologic processes such as cell-to-cell interactions; and as receptors for some viruses, bacterial and plant toxins, hormones, and so forth, and invariably for all the lectins (1). However, their receptor functions remained poorly defined for a long time as they form micelles even at very low concentrations in aqueous medium. In micelles, the oligosaccharide chains are not expected to have a well defined orientation suitable for recognition by macromolecular ligands. This problem was overcome by incorporating them in model membranes, namely, the liposomes. The demonstration of lectin-glycolipid interaction using liposomal model membranes was a crucial development that established glycolipids as biological receptors. Moreover, glycolipid-bearing liposomes provide a convenient system for investigating the role of glycolipid density, orientation, and exposure of their oligosaccharide chains at the membrane interface relevant to their receptor function (2–4).
Resumo:
The compressibilities of some electrolytic solutions at low concentrations have been determined by employing Carstensen's phase-comparison pulse method for measuring the ultrasonic velocity differences and by simultaneously measuring their densities with a Weld-type pyknometer. The apparent molal compressibilities φ(χ̄2) of NaHSO4, KHSO 4, NaP2PO4 and Na-HPO4 have been plotted against the square root of the molarities c. The observations are explained in terms of incomplete dissociation.
Resumo:
Clinical and mycological investigations were made on 225 cases of suspected dermatomycoses. Of these, 102 were microscopically positive. But only 63 were culturally positive, and these are analysed here with regard to clinical patterns and aetiological species, age, sex and occupational incidence and susceptibility to griseofulvin in vitro. As in most other parts of India, Trichophyton rubrum was the dominant species. A high proportion of Epidermophyton floccosum was an unusual feature seen. Of the clinical types, tinea cruris was the most common. The isolates were sensitive to griseofulvin at low concentrations of 1 to 5 μg per ml of agar medium, E. floccosum being the most sensitive.
Resumo:
1.The reported inhibition of the succinate oxidase system at high concentrations of dinitrophenol, considered to be at the primary dehydrogenase level, is now confirmed by measuring the activity of succinate dehydrogenase (succinate:(acceptor) oxidoreductase, EC 1.3.99.1) in the presence of dinitrophenol, using the dye reduction method. 2. 2. The results indicate that the inhibition of substrate-activated succinate dehydrogenase by dinitrophenol is competitive. 3. 3. Low concentrations of dinitrophenol inhibited the basal activity, while at higher concentrations the kinetics were complicated by an apparent activation. 4. 4. Preincubation of mitochondria with dinitrophenol stimulated the enzyme activity, a phenomenon shown by succinate and competitive inhibitors. This activation was very rapid at 37°, compared to that by succinate; activation by dinitrophenol was observed even at 25°, under conditions where succinate had no effect. 5. 5. Repeated washing of the activated mitochondrial samples with the sucrose homogenizing medium reduced the succinate-stimulated activity to the basal level, but only partially reversed the dinitrophenol activation. 6. 6. The relevance of this activation phenomenon to the physiological modulation of this enzyme system is discussed.