6 resultados para Logan, Damion

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate two equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. With increasing interdot coupling, a rich range of behavior is uncovered: first a crossover from spin- to charge-Kondo physics, via an intermediate SU(4) state with entangled spin and charge degrees of freedom, followed by a quantum phase transition of Kosterlitz-Thouless type to a non-Fermi-liquid "charge-ordered" phase with finite residual entropy and anomalous transport properties. Physical arguments and numerical renormalization group methods are employed to obtain a detailed understanding of the problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong-coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime, and then towards and through the quantum phase transition to a charge-ordered ( CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1990 Enderby and Barnes reviewed the electrical properties of liquid alloys which show features associated with semiconducting behaviour. They proposed an empirical classification scheme based on the notion that some liquid semiconductors are characterized by a finite gap in σ (E), the energy-dependent conductivity (narrow definition), whereas in others σ (E) is continuous (broad definition). Interesting behaviour occurs for systems at the narrow/broad boundary and further analysis of these liquid alloys will form the subject matter of this paper. Particular attention will be focused on liquid silver chalcogenides as these offer a severe test of current theories.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study odd-membered chains of spin-1/2 impurities, with each end connected to its own metallic lead. For antiferromagnetic exchange coupling, universal two-channel Kondo (2CK) physics is shown to arise at low energies. Two overscreening mechanisms are found to occur depending on coupling strength, with distinct signatures in physical properties. For strong interimpurity coupling, a residual chain spin-1/2 moment experiences a renormalized effective coupling to the leads, while in the weak-coupling regime, Kondo coupling is mediated via incipient single-channel Kondo singlet formation. We also investigate models in which the leads are tunnel-coupled to the impurity chain, permitting variable dot filling under applied gate voltages. Effective low-energy models for each regime of filling are derived, and for even fillings where the chain ground state is a spin singlet, an orbital 2CK effect is found to be operative. Provided mirror symmetry is preserved, 2CK physics is shown to be wholly robust to variable dot filling; in particular, the single-particle spectrum at the Fermi level, and hence the low-temperature zero-bias conductance, is always pinned to half-unitarity. We derive a Friedel-Luttinger sum rule and from it show that, in contrast to a Fermi liquid, the Luttinger integral is nonzero and determined solely by the ``excess'' dot charge as controlled by gate voltage. The relevance of the work to real quantum dot devices, where interlead charge-transfer processes fatal to 2CK physics are present, is also discussed. Physical arguments and numerical renormalization-group techniques are used to obtain a detailed understanding of these problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A many-body theory of paramagnetic Kondo insulators is described, focusing specifically on single-particle dynamics, scattering rates, dc transport and optical conductivities. This is achieved by development of a non-perturbative local moment approach to the symmetric periodic Anderson model within the framework of dynamical mean-field theory. Our natural focus is the strong-coupling, Kondo lattice regime, in particular the resultant 'universal' scaling behaviour in terms of the single, exponentially small low-energy scale characteristic of the problem. Dynamics/transport on all relevant (ω, T)-scales are considered, from the gapped/activated behaviour characteristic of the low-temperature insulator through to explicit connection to single-impurity physics at high ω and/or T; and for optical conductivities emphasis is given to the nature of the optical gap, the temperature scale responsible for its destruction and the consequent clear distinction between indirect and direct gap scales. Using scaling, explicit comparison is also made to experimental results for dc transport and optical conductivities of Ce3Bi4Pt3, SmB6 and YbB12. Good agreement is found, even quantitatively; and a mutually consistent picture of transport and optics results.