97 resultados para Loading constraint

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objectives of this paper are to examine the loss of crack tip constraint in dynamically loaded fracture specimens and to assess whether it can lead to enhancement in the fracture toughness at high loading rates which has been observed in several experimental studies. To this end, 2-D plane strain finite element analyses of single edge notched (tension) specimen and three point bend specimen subjected to time varying loads are performed. The material is assumed to obey the small strain J(2) flow theory of plasticity with rate independent behaviour. The results demonstrate that a valid J-Q field exists under dynamic loading irrespective of the crack length and specimen geometry. Further, the constraint parameter Q becomes strongly negative at high loading rates, particularly in deeply cracked specimens. The variation of dynamic fracture toughness K-dc with stress intensity rate K for cleavage cracking is predicted using a simple critical stress criterion. It is found that inertia-driven constraint loss can substantially enhance K-dc for (K) over dot > 10(5) MPa rootm/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the well known formulations for topology optimization of compliant mechanisms could lead to lumped compliant mechanisms. In lumped compliance, most of the elastic deformation in a mechanism occurs at few points, while rest of the mechanism remains more or less rigid. Such points are referred to as point-flexures. It has been noted in literature that high relative rotation is associated with point-flexures. In literature we also find a formulation of local constraint on relative rotations to avoid lumped compliance. However it is well known that a global constraint is easier to handle than a local constraint, by a numerical optimization algorithm. The current work presents a way of putting global constraint on relative rotations. This constraint is also simpler to implement since it uses linearized rotation at the center of finite-elements, to compute relative rotations. I show the results obtained by using this constraint oil the following benchmark problems - displacement inverter and gripper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental investigations into the dielectric properties of epoxy-ZnO nanocomposites at different filler loadings reveal few unique behaviors (at certain filler loadings) and also advantageous characteristics in contrast to the properties obtained for the corresponding microcomposites. Results demonstrate that in nanocomposites, it is possible to achieve lower values of permittivity and tan delta with respect to unfilled epoxy over a wide frequency range. Analysis of the results attributes this interesting observation to the interaction dynamics between the epoxy chains and the ZnO nanoparticles at the interfacial area. The dc volume resistivities and ac dielectric strengths of nanocomposites were also experimentally determined in the present study and the obtained characteristics are found to be different as compared to the results obtained for microcomposites. The volume fraction and nature of the interfaces in the bulk of the composites seem to influence this difference in the examined dielectric properties of the nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of misfit (interference or clearance) pin in a large orthotropic plate was solved earlier by the authors for biaxial loading in the principal directions of orthotropy. Here, a more general case of arbitrarily oriented loading is considered. The most important aspect of the problem studied is the partial contact at the pin-hole interface. The solution is obtained by extending the use of ‘inverse technique’ which was successfully applied earlier by the authors to problems of pins in isotropic and orthotropic domains. The loss of symmetry because of the arbitrary orientation of loading makes the problem more complex. Additional parameters are then involved in the inversion of the problem for the solution. Numerical results are presented primarily for a smooth interference fit pin in a typical orthotropic plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, effects of pressure sensitive yielding and plastic dilatancy on void growth and void interaction mechanisms in fracture specimens displaying high and low constraint levels are investigated. To this end, large deformation finite element simulations are carried out with discrete voids ahead of the notch. It is observed that multiple void interaction mechanism which is favored by high initial porosity is further accelerated by pressure sensitive yielding, but is retarded by loss of constraint. The resistance curves predicted based on a simple void coalescence criterion show enhancement in fracture resistance when constraint level is low and when pressure sensitivity is suppressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constraint factor, C (given by the hardness-yield strength ratio H/Y in the fully lastic regime of indentation), in metallic glasses, is greater than three, a reflection of the sensitivity of their plastic flow to pressure. Furthermore, C increases with increasing temperature. In this work, we examine if this is true in amorphous polymers as well, through experiments on amorphous poly(methyl methacrylate) (PMMA). Uniaxial compression as well as spherical indentation tests were conducted in the 248-348 K range to construct H/Y versus indentation strain plots at each temperature and obtain the C-values. Results show that C increases with temperature in PMMA as well. Good correlation between the loss factors, measured using a dynamic mechanical analyzer, and C, suggest that the enhanced sensitivity to pressure is possibly due to beta-relaxation. We offer possible mechanistic reasons for the observed trends in amorphous materials in terms of relaxation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Chance-constraint Programming approach for constructing maximum-margin classifiers which are robust to interval-valued uncertainty in training examples. The methodology ensures that uncertain examples are classified correctly with high probability by employing chance-constraints. The main contribution of the paper is to pose the resultant optimization problem as a Second Order Cone Program by using large deviation inequalities, due to Bernstein. Apart from support and mean of the uncertain examples these Bernstein based relaxations make no further assumptions on the underlying uncertainty. Classifiers built using the proposed approach are less conservative, yield higher margins and hence are expected to generalize better than existing methods. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle interval-valued uncertainty than state-of-the-art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crush bands that form during plastic deformation of closed-cell metal foams are often inclined at 11-20 degrees to the loading axis, allowing for shear displacement of one part of the foam with respect to the other. Such displacement is prevented by the presence of a lateral constraint. This was analysed in this study, which shows that resistance against shear by the constraint leads to the strain-hardening effect in the foam that has been reported in a recent experimental study. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exact theoretical solution is given for the stresses and displacements in an infinite plate of finite thickness having a circular hole and subjected to axisymmetric normal leading. The solution is given in the form of Fourier-Bessel series and integral. Numerical results are given for stresses in plates having different thickness to hole diameter ratios and loadings. The results are compared with the available approximate theoretical and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an overview of some recent numerical simulations of stationary crack tip fields in elastic-plastic solids is presented. First, asymptotic analyses carried out within the framework of 2D plane strain or plane stress conditions in both pressure insensitive and pressure sensitive plastic solids are reviewed. This is followed by discussion of salient results obtained from recent computational studies. These pertain to 3D characteristics of elastic-plastic near-front fields under mixed mode loading, mechanics of fracture and simulation of near-tip shear banding process of amorphous alloys and influence of crack tip constraint on the structure of near-tip fields in ductile single crystals. These results serve to illustrate several important features associated with stress and strain distributions near the crack tip and provide the foundation for understanding the operative failure mechanisms. The paper concludes by highlighting some of the future prospects for this field of study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a constraint Jacobian matrix based approach to obtain the stiffness matrix of widely used deployable pantograph masts with scissor-like elements (SLE). The stiffness matrix is obtained in symbolic form and the results obtained agree with those obtained with the force and displacement methods available in literature. Additional advantages of this approach are that the mobility of a mast can be evaluated, redundant links and joints in the mast can be identified and practical masts with revolute joints can be analysed. Simulations for a hexagonal mast and an assembly with four hexagonal masts is presented as illustrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Taylor hypothesis has provided a model for the relaxed magnetic configurations of not only laboratory plasmas, but also of astrophysical plasmas. However, energy dissipation is possible only for systems which depart from a strict Taylor state, and hence a parameter describing that departure must be introduced, when the Taylor hypothesis is used to estimate the dissipation. An application of the Taylor hypothesis to the problem of coronal heating provides an insight into this difficult problem. When particular sorts of footpoint motions put energy and helicity in the corona, the conservation of helicity puts a constraint on how much of the energy can be dissipated. However, on considering a random distribution of footpoint motions, this constraint gets washed away, and the Taylor hypothesis is probably not going to play any significant role in the actual calculation of relevant physical quantities in the coronal heating problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of crack tip constraint on near-tip stress and deformation fields in a ductile FCC single crystal is studied under mode I, plane strain conditions. To this end, modified boundary layer simulations within crystal plasticity framework are performed, neglecting elastic anisotropy. The first and second terms of the isotropic elastic crack tip field, which are governed by the stress intensity factor K and T-stress, are prescribed as remote boundary conditions and solutions pertaining to different levels of T-stress are generated. It is found that the near-tip deformation field, especially, the development of kink or slip shear bands, is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the crack tip are also strongly influenced by the level of T-stress, with progressive loss of crack tip constraint occurring as T-stress becomes more negative. A family of near-tip fields is obtained which are characterized by two terms (such as K and T or J and a constraint parameter Q) as in isotropic plastic solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the mechanics of tubular hydroforming under various types of loading conditions is investigated. The main objective is to contrast the effects of prescribing fluid pressure or volume flow rate, in conjunction with axial displacement, on the stress and strain histories experienced by the tube and the process of bulging. To this end, axisymmetric finite element simulations of free hydroforming (without external die contact) of aluminium alloy tubes are carried out. Hill’s normally anisotropic yield theory along with material properties determined in a previous experimental study [A. Kulkarni, P. Biswas, R. Narasimhan, A. Luo, T. Stoughton, R. Mishra, A.K. Sachdev, An experimental and numerical study of necking initiation in aluminium alloy tubes during hydroforming, Int. J. Mech. Sci. 46 (2004) 1727–1746] are employed in the computations. It is found that while prescribed fluid pressure leads to highly non-proportional strain paths, specified fluid volume flow rate may result in almost proportional ones for the predominant portion of loading. The peak pressure increases with axial compression for the former, while the reverse trend applies under the latter. The implication of these results on failure by localized necking of the tube wall is addressed in a subsequent investigation.