206 resultados para Load bearing LSF walls
em Indian Institute of Science - Bangalore - Índia
Resumo:
An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.1. The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non-covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress-bearing and other applications.
Resumo:
Rammed earth walls are low carbon emission and energy efficient alternatives to load bearing walls. Large numbers of rammed earth buildings have been constructed in the recent past across the globe. This paper is focused on embodied energy in cement stabilised rammed earth (CSRE) walls. Influence of soil grading, density and cement content on compaction energy input has been monitored. A comparison between energy content of cement and energy in transportation of materials, with that of the actual energy input during rammed earth compaction in the actual field conditions and the laboratory has been made. Major conclusions of the investigations are (a) compaction energy increases with increase in clay fraction of the soil mix and it is sensitive to density of the CSRE wall, (b) compaction energy varies between 0.033 MJ/m(3) and 0.36 MJ/m(3) for the range of densities and cement contents attempted, (c) energy expenditure in the compaction process is negligible when compared to energy content of the cement and (d) total embodied energy in CSRE walls increases linearly with the increase in cement content and is in the range of 0.4-0.5 GJ/m(3) for cement content in the rage of 6-8%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Rammed earth is used for load bearing walls of buildings and there is growing interest in this low carbon building material. This paper is focused on understanding the compaction characteristics and physical properties of compacted cement stabilised soil mixtures and cement stabilised rammed earth (CSRE). This experimental study addresses (a) influence of soil composition, cement content, time lag on compaction characteristics of stabilised soils and CSRE and (b) effect of moulding water content and density on compressive strength and water absorption of compacted cement stabilised soil mixes. Salient conclusions of the study are (a) compaction characteristics of soils are not affected by the addition of cement, (b) there is 50% fall in strength of CSRE for 10 h time lag, (c) compressive strength of compacted cement stabilised soil increases with increase in density irrespective of moulding moisture content and cement content, and (d) compressive strength increases with the increase in moulding water content and compaction of CSRE on the wet side of OMC is beneficial in terms of strength.
Resumo:
Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.
Resumo:
Rammed earth is a monolithic construction and the construction process involves compaction of processed soil in progressive layers in a rigid formwork. Durable and thinner load bearing walls can be built using stabilised rammed earth. Use of inorganic additives such as cement for rammed earth walls has been in practice since the last 5-6 decades and cement stabilised rammed earth (CSRE) buildings can be seen across the world. The paper deals with the construction aspects, structural design and embodied energy analysis of a three storey load bearing school building complex. The CSRE school complex consists of 15 classrooms, an open air theatre and a service block. The complex has a built-up area of 1691.3 m(2) and was constructed employing manual construction techniques. This case study shows low embodied energy of 1.15 GJ/m(2) for the CSRE building as against 3-4 GJ/m(2) for conventional burnt clay brick load bearing masonry buildings. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Managing sludge generated by treating groundwater contaminated with geogenic contaminants (fluoride, arsenic, and iron) is a major issue in developing nations. Their re-use in civil engineering applications is a possible pathway for reducing the impact on the geo-environment. This paper examines the re-use of one such sludge material, namely, fluoride contaminated bone char sludge, as partial replacement for fine aggregate (river-sand) in the manufacture of dense concrete specimens. Bone char sludge is being produced by defluoridation of contaminated groundwater in Nalagonda District, Andhra Pradesh, India. The impact of admixing 1.5-9% sludge contents on the compression strength and fluoride leaching potential of the sludge admixed concrete (SAC) specimens are examined. The compression strengths of the SAC specimensa re examined with respect to strength criteria for manufacture of dense, load-bearing concrete blocks. The fluoride release potential of the SAC specimens is examined with respect to standards specific to disposal of treated leachate into inland surface water.
Resumo:
In the present investigation, the wear behaviour of a creep-resistant AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations is examined in the longitudinal direction i.e., the plane containing random fibre orientation is perpendicular to the steel counter-face. Wear tests are conducted on a pin-on-disc set-up under dry sliding condition having a constant sliding velocity of 0.837 m/s for a constant sliding distance of 2.5 km in the load range of 10-40 N. It is observed that the wear rate increases with increase in load for the alloy and the composites, as expected. Wear rate of the composites is lower than the alloy and the hybrid composites exhibit a lower wear rate than the Saffil short fibres reinforced composite at all the loads. Therefore, the partial replacement of Saffil short fibres by an equal volume fraction of SiC particles not only reduces the cost but also improves the wear resistance of the composite. Microstructural investigation of the surface and subsurface of the worn pin and wear debris is carried out to explain the observed results and to understand the wear mechanisms. It is concluded that the presence of SiC particles in the hybrid composites improves the wear resistance because these particles remain intact and retain their load bearing capacity even at the highest load employed, they promote the formation of iron-rich transfer layer and they also delay the fracture of Saffil short fibres to higher loads. Under the experimental conditions used in the present investigation, the dominant wear mechanism is found to be abrasion for the AE42 alloy and its composites. It is accompanied by severe plastic deformation of surface layers in case of alloy and by the fracture of Saffil short fibres as well as the formation of iron-rich transfer layer in case of composites.
Resumo:
Soil-cement blocks are employed for load bearing masonry buildings. This paper deals with the study on the influence of bed joint thickness and elastic properties of the soil-cement blocks, and the mortar on the strength and behavior of soil-cement block masonry prisms. Influence of joint thickness on compressive strength has been examined through an experimental program. The nature of stresses developed and their distribution, in the block and the mortar of the soil-cement block masonry prism under compression, has been analyzed by an elastic analysis using FEM. Influence of various parameters like joint thickness, ratio of block to mortar modulus, and Poisson's ratio of the block and the mortar are considered in FEM analysis. Some of the major conclusions of the study are: (1) masonry compressive strength is sensitive to the ratio of modulus of block to that of the mortar (Eb/Em) and masonry compressive strength decreases as the mortar joint thickness is increased for the case where the ratio of block to mortar modulus is more than 1; (2) the lateral tensile stresses developed in the masonry unit are sensitive to the Eb/Em ratio and the Poisson's ratio of mortar and the masonry unit; and (3) lateral stresses developed in the masonry unit are more sensitive to the Poisson's ratio of the mortar than the Poisson's ratio of the masonry unit.
Resumo:
Blocks of 3Y-TZP were indented with conical diamond indenters. indentation caused tetragonal to monoclinic phase transformation in a subsurface. Of the cracks generated in the subsurface, radial and lateral cracks can be accounted for by a continuum model of the indented subsurface, built using a combination of the Boussinesq and blister stress fields. Additional ring, median and cone cracks were also observed. It is hypothesized that the latter are motivated by the reduction in blister strength or residual energy brought about by the material damage caused by the phase transformation. This damage reduces the load bearing capacity of the material progressively with increasing normal load.
Resumo:
The paper addresses certain issues pertaining to the technology of lime-stabilised steam-cured blocks used for masonry construction. Properties of lime-stabilised steam-cured blocks using expansive soils and tank bed soils have been examined. Influence of parameters like steam curing period, lime content and fly ash content on wet strength of blocks is studied. Steam curing of lime stabilised blocks at 80degreesC for about 20 hours at atmospheric pressure leads to considerably higher strengths when compared with curing under wet cloth at ambient temperatures. Clay-fly ash fractions of the mix control the optimum lime content yielding maximum strength. Long-term strength behaviour of steam-cured blocks has been monitored. The results indicate a favourable lime-clay ratio for stable long-term strength. A small-scale steam cured block production system has been designed and implemented to construct a load bearing masonry structure, thus demonstrating the potential of steam-cured block as a material for masonry construction.
Resumo:
Lime-fly ash mixtures are exploited for the manufacture of fly ash bricks finding applications in load bearing masonry. Lime-pozzolana reactions take place at a slow pace under ambient temperature conditions and hence very long curing durations are required to achieve meaningful strength values. The present investigation examines the improvements in strength development in lime-fly ash compacts through low temperature steam curing and use of additives like gypsum. Results of density-strength-moulding water content relationships, influence of lime-fly ash ratio, steam curing and role of gypsum on strength development, and characteristics of compacted lime-fly ash-gypsum bricks have been discussed. The test results reveal that (a) strength increases with increase in density irrespective of lime content, type of curing and moulding water content, (b) optimum lime-fly ash ratio yielding maximum strength is about 0.75 in the normal curing conditions, (c) 24 h of steam curing (at 80A degrees C) is sufficient to achieve nearly possible maximum strength, (d) optimum gypsum content yielding maximum compressive strength is at 2%, (e) with gypsum additive it is possible to obtain lime-fly ash bricks or blocks having sufficient strength (> 10 MPa) at 28 days of normal wet burlap curing.
Resumo:
Among various biologically compatible materials, hydroxyapatite (HA) has excellent bioactivity/osteointegration properties and therefore has been extensively investigated for biomedical applications. However, its inferior fracture toughness limits the wider applications of monolithic HA as a load-bearing implant. To this end, HA-based biocomposites have been developed to improve their mechanical properties (toughness and strength) without compromising biocompatibility. Despite significant efforts over last few decades, the toughness of HA-based composites could not be enhanced beyond 1.5-2 MPa m(1/2), even when measured using indentation techniques. In this perspective, the present work demonstrates how spark plasma sintering can be effectively utilized to develop hydroxyapatite titanium (HA-Ti) composites with varying amounts of Ti (5, 10 and 20 wt.%) with extremely high single edge V-notch beam fracture toughness (4-5 MPa m(1/2)) along with a good combination of elastic modulus and flexural strength. Despite predominant retention of HA and Ti, the combination of critical analysis of X-ray diffraction and transmission electron microscopy investigation confirmed the formation of the CaTi4(PO4)(6) phase with nanoscale morphology at the HA/Ti interface and the formation of such a phase has been discussed in reference to possible sintering reactions. The variations in the measured fracture toughness and work of fracture with Ti addition to the HA matrix were further rationalized using the analytical models of crack bridging as well as on the basis of the additional contribution from crack deflection. The present work opens up the opportunity to further enhance the toughness beyond 5 MPa m(1/2) by microstructural designing with the desired combination of toughening phases. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO(2)-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The design and implementation of a morphing Micro Air Vehicle (MAV) wing using a smart composite is attempted in this research work. Control surfaces actuated by traditional servos are difficult to instrument and fabricate on thin composite-wings of MAVs. Piezoelectric Fiber Reinforced Composites (PFRCs) are the chosen smart structural materials in the current work for incorporation onto fixed-wing MAVs to simultaneously perform the dual functions of structural load-bearing and actuation of flexure, torsion and/or extension for morphing. Further, PFRC use can be extended towards shape control of a “fixed” wing MAV to meet changing performance requirements. Wings that can warp into desired shapes and/or have variable camber are well-known to exhibit improved efficiency in aerodynamic control. During an entire flight cycle, there are multiple optimal configurations, each of which suits a particular phase of the flight regime. Widely proposed methods of wing morphing include changes in camber, twist, sweep and span. However, camber change during flight is already established, in terms of its potential, as a major factor in improving the aerofoil efficiency and flow separation behavior. Hence, for this work, morphing with camber change is adopted with the goal to better tailor aerodynamic properties.
Resumo:
Poly(epsilon-caprolactone) (PCL) is an aliphatic polyester widely used for biomedical applications but lacks the mechanical properties desired for many load-bearing orthopedic applications. The objective of this study was to prepare and characterize PCL composites incorporating multiwall carbon nanotubes (MWNTs) with different surface functional groups. PCL composites were prepared by melt-mixing with three different types of MWNTs: pristine (pMWNT), amine functionalized (aMWNT), and carboxyl functionalized (cMWNT). Melt rheology and scanning electron microscopy indicated good dispersion of the nanotubes in the matrix. Tensile strength and elastic modulus of the polymer was significantly increased by the incorporation of MWNTs and further enhanced by favorable interactions between PCL and aMWNTs. Thermal analysis revealed that MWNTs act as heterogeneous nucleation sites for crystallization of PCL and increase polymer crystallinity. Incorporation of functionalized MWNTs increased the surface water wettability of PCL. Osteoblast proliferation and differentiation was significantly enhanced on functionalized composites. aMWNT composites also exhibited the best bactericidal response. This study demonstrates that surface functionalization of MWNTs profoundly influences the properties of PCL and amine-functionalization offers the optimal combination of mechanical properties, osteogenesis and antimicrobial response. These results have important implications for designing nanocomposites for use in orthopedics.