9 resultados para List processing (Electronic computers)

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemically pure and stoichiometric lanthanide chromites, LnCrO3, where Ln = La, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Lu and YCrO3 have been prepared by the calcination of the corresponding lanthanide bis(citrato)chromium {Ln[Cr(C6H5O7)2·nH2O} complexes at relatively low temperatures. Formation of the chromites was confirmed by powder X-ray diffraction, infrared and electronic spectra. The citrate gel process is found to be highly economical, time-saving and appropriate for the large-scale production of these ceramic materials at low temperatures compared with other non-conventional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Editors' note:Flexible, large-area display and sensor arrays are finding growing applications in multimedia and future smart homes. This article first analyzes and compares current flexible devices, then discusses the implementation, requirements, and testing of flexible sensor arrays.—Jiun-Lang Huang (National Taiwan University) and Kwang-Ting (Tim) Cheng (University of California, Santa Barbara)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a communication theoretic framework for modeling 2-D magnetic recording channels. Using the model, we define the signal-to-noise ratio (SNR) for the channel considering several physical parameters, such as the channel bit density, code rate, bit aspect ratio, and noise parameters. We analyze the problem of optimizing the bit aspect ratio for maximizing SNR. The read channel architecture comprises a novel 2-D joint self-iterating equalizer and detection system with noise prediction capability. We evaluate the system performance based on our channel model through simulations. The coded performance with the 2-D equalizer detector indicates similar to 5.5 dB of SNR gain over uncoded data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GdxZn1-xO (x = 0, 0.02, 0.04 and 0.06) nanostructures have been synthesized using sol-gel technique and characterized to understand their structural and magnetic properties. X-ray diffraction (XRD) results show that Gd (0, 2, 4 and 6 %)-doped ZnO nanostructures crystallized in the wurtzite structure having space group C3(v) (P6(3)mc). Photoluminescence and Raman studies of Gd-doped ZnO powder show the formation of singly ionized oxygen vacancies. X-ray absorption spectroscopy reveals that Gd replaces the Zn atoms in the host lattice and maintains the crystal symmetry with slight lattice distortion. Gd L-3-edge spectra reveal charge transfer between Zn and Gd dopant ions. O K-edge spectra also depict the charge transfer through the oxygen bridge (Gd-O-Zn). Weak magnetic ordering is observed in all Gd-doped ZnO samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.