2 resultados para Lingual Frenum
em Indian Institute of Science - Bangalore - Índia
Resumo:
To effectively support today’s global economy, database systems need to manage data in multiple languages simultaneously. While current database systems do support the storage and management of multilingual data, they are not capable of querying across different natural languages. To address this lacuna, we have recently proposed two cross-lingual functionalities, LexEQUAL[13] and SemEQUAL[14], for matching multilingual names and concepts, respectively. In this paper, we investigate the native implementation of these multilingual functionalities as first-class operators on relational engines. Specifically, we propose a new multilingual storage datatype, and an associated algebra of the multilingual operators on this datatype. These components have been successfully implemented in the PostgreSQL database system, including integration of the algebra with the query optimizer and inclusion of a metric index in the access layer. Our experiments demonstrate that the performance of the native implementation is up to two orders-of-magnitude faster than the corresponding outsidethe- server implementation. Further, these multilingual additions do not adversely impact the existing functionality and performance. To the best of our knowledge, our prototype represents the first practical implementation of a crosslingual database query engine.
Resumo:
Identifying translations from comparable corpora is a well-known problem with several applications, e.g. dictionary creation in resource-scarce languages. Scarcity of high quality corpora, especially in Indian languages, makes this problem hard, e.g. state-of-the-art techniques achieve a mean reciprocal rank (MRR) of 0.66 for English-Italian, and a mere 0.187 for Telugu-Kannada. There exist comparable corpora in many Indian languages with other ``auxiliary'' languages. We observe that translations have many topically related words in common in the auxiliary language. To model this, we define the notion of a translingual theme, a set of topically related words from auxiliary language corpora, and present a probabilistic framework for translation induction. Extensive experiments on 35 comparable corpora using English and French as auxiliary languages show that this approach can yield dramatic improvements in performance (e.g. MRR improves by 124% to 0.419 for Telugu-Kannada). A user study on WikiTSu, a system for cross-lingual Wikipedia title suggestion that uses our approach, shows a 20% improvement in the quality of titles suggested.