149 resultados para Lie algebras.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The Inönü-Wigner contractions which interrelate the Lie algebras of the isometry groups of metric spaces are discussed with reference to deformations of the absolutes of the spaces. A general formula is derived for the Lie algebra commutation relations of the isometry group for anyN-dimensional metric space. These ideas are illustrated by a discussion of important particular cases, which interrelate the four-dimensional de Sitter, Poincaré, and Galilean groups.
Resumo:
It is well known that space-time block codes (STBCs) obtained from orthogonal designs (ODs) are single-symbol decodable (SSD) and from quasi-orthogonal designs (QODs) are double-symbol decodable (DSD). However, there are SSD codes that are not obtainable from ODs and DSD codes that are not obtainable from QODs. In this paper, a method of constructing g-symbol decodable (g-SD) STBCs using representations of Clifford algebras are presented which when specialized to g = 1, 2 gives SSD and DSD codes, respectively. For the number of transmit antennas 2(a) the rate (in complex symbols per channel use) of the g-SD codes presented in this paper is a+1-g/2(a-9). The maximum rate of the DSD STBCs from QODs reported in the literature is a/2(a-1) which is smaller than the rate a-1/2(a-2) of the DSD codes of this paper, for 2(a) transmit antennas. In particular, the reported DSD codes for 8 and 16 transmit antennas offer rates 1 and 3/4, respectively, whereas the known STBCs from QODs offer only 3/4 and 1/2, respectively. The construction of this paper is applicable for any number of transmit antennas. The diversity sum and diversity product of the new DSD codes are studied. It is shown that the diversity sum is larger than that of all known QODs and hence the new codes perform better than the comparable QODs at low signal-to-noise ratios (SNRs) for identical spectral efficiency. Simulation results for DSD codes at variousspectral efficiencies are provided.
Resumo:
A general derivation of the coupling constant relations which result on embedding a non-simple group like SU L (2) @ U(1) in a larger simple group (or graded Lie group) is given. It is shown that such relations depend only on the requirement (i) that the multiplet of vector fields form an irreducible representation of the unifying algebra and (ii) the transformation properties of the fermions under SU L (2). This point is illustrated in two ways, one by constructing two different unification groups containing the same fermions and therefore have same Weinberg angle; the other by putting different SU L (2) structures on the same fermions and consequently have different Weinberg angles. In particular the value sin~0=3/8 is characteristic of the sequential doublet models or models which invoke a large number of additional leptons like E 6, while addition of extra charged fermion singlets can reduce the value of sin ~ 0 to 1/4. We point out that at the present time the models of grand unification are far from unique.
Resumo:
The aim of this article is to characterize unitary increment process by a quantum stochastic integral representation on symmetric Fock space. Under certain assumptions we have proved its unitary equivalence to a Hudson-Parthasarathy flow.
Resumo:
A Trotter product formula is established for unitary quantum stochastic processes governed by quantum stochastic differential equations with constant bounded coefficients.
Resumo:
A set of sufficient conditions to construct lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for lambda = 2(a), a is an element of N is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.
Resumo:
It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.
Resumo:
Various aspects of coherent states of nonlinear su(2) and su(1,1) algebras are studied. It is shown that the nonlinear su(1,1) Barut-Girardello and Perelomov coherent states are related by a Laplace transform. We then concentrate on the derivation and analysis of the statistical and geometrical properties of these states. The Berry's phase for the nonlinear coherent states is also derived. (C) 2010 American Institute of Physics. doi:10.1063/1.3514118]
Resumo:
We define lacunary Fourier series on a compact connected semisimple Lie group G. If f is an element of L-1 (G) has lacunary Fourier series and f vanishes on a non empty open subset of G, then we prove that f vanishes identically. This result can be viewed as a qualitative uncertainty principle.
Resumo:
For the number of transmit antennas N = 2(a) the maximum rate (in complex symbols per channel use) of all the Quasi-Orthogonal Designs (QODs) reported in the literature is a/2(a)-1. In this paper, we report double-symbol-decodable Space-Time Block Codes with rate a-1/2(a)-2 for N = 2(a) transmit antennas. In particular, our code for 8 and 16 transmit antennas offer rates 1 and 3/4 respectively, the known QODs offer only 3/4 and 1/2 respectively. Our construction is based on the representations of Clifford algebras and applicable for any number of transmit antennas. We study the diversity sum and diversity product of our codes. We show that our diversity sum is larger than that of all known QODs and hence our codes perform better than the comparable QODs at low SNRs for identical spectral efficiency. We provide simulation results for various spectral efficiencies.
Resumo:
The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.
Resumo:
We discuss three methods to correct spherical aberration for a point to point imaging system. First, results obtained using Fermat's principle and the ray tracing method are described briefly. Next, we obtain solutions using Lie algebraic techniques. Even though one cannot always obtain analytical results using this method, it is often more powerful than the first method. The result obtained with this approach is compared and found to agree with the exact result of the first method.
Resumo:
We formulate and prove two versions of Miyachi�s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi�s theorem for the group Fourier transform.
Resumo:
We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s theorem for the group Fourier transform.