21 resultados para Left-hemisphere Stroke
em Indian Institute of Science - Bangalore - Índia
Resumo:
We have investigated structural transitions in Poly(dG-dC) and Poly(dG-Me5dC) in order to understand the exact role of cations in stabilizing left-handed helical structures in specific sequences andthe biological role, if any, of these structures. From a novel temperature dependent transition it has been shown that a minor fluctuation in Na+ concentration at ambient temperature can bring about Β to Ζ transition. Forthe first time, wehave observed a novel double transition in poly(dG-Me5dC) as the Na+ concentration is gradually increased. This suggests that a minor fluctuation in Na+ concentration in conjunction with methylation may transform small stretches of CG sequences from one conformational state to another. These stretches could probably serve as sites for regulation. Supercoiled formV DNA reconstituted from pBR322 and pßG plasmids have been studied as model systems, in order to understand the nature and role of left-handed helical conformation in natural sequences. A large portion of DNA in form V, obtained by reannealing the two complementary singlestranded circles is forced to adopt left-handed double helical structure due to topological constraints (Lk = 0). Binding studies with Z-DNA specific antibody and spectroscopic studies confirm the presence of left-handed Z-structure in the pßG and pßR322 form V DNA. Cobalt hexamine chloride, which induces Z-form in Poly(dG-dC) stabilizes the Z-conformation in form V DNA even in the non-alternating purine-pyrimidine sequences. A reverse effect is observed with ethidium bromide. Interestingly, both topoisomerase I and II (from wheat germ) act effectively on form V DNA to give rise to a species having an electrophoretic mobility on agarose gel similar to that of open circular (form II) DNA. Whether this molecule is formed as a result of the left-handed helical segments of form V DNA undergoing a transition to the right-handed B-form during the topoisomerase action remains to be solved.
Resumo:
Earlier, we showed that, for the D form (n = 8 and h = 3.03 A, where n is number of nucleotide units per turn and h is height per nucleotide unit) of poly[d(A-T)], both right- and left-handed double helical models are stereochemically satisfactory and give good agreement with the observed fiber diffraction data. It was also noted that the conformations of the right- and left-handed D-DNA models are very similar to those of the right- and left-handed B-DNA models. This observation was consistent with the D leads to B transition in the solid phase. As a continuation of our earlier studies, we have carried out similar experiments with poly[d(I-C)]. We could obtain a crystalline D-form pattern (n = 8, h = 3.13 A) of the fiber at 75% relative humidity (r.h.); the hydrated (r.h. approximately equal to 95%) form of the same fiber gave the classical B-form pattern (n = 10, h = 3.40 A). In the present report, we show that both right- and left-handed double-helical models are consistent with the fiber diffraction data of poly[d(I-C)] in the D-form. Theoretical energy calculations also suggest that the right- and left-handed B- and D-DNA models are almost equally stable. Hence, we conclude that the right- and left-handed double-helical models of poly[d(I-C)] in a given form (B or D) are equally likely and that the fiber diffraction data do not permit discrimination.
Resumo:
Left handed duplexes are shown to be in agreement with the X-ray intensity data of A-, B- and D-forms of DNA. The structures are stereochemically satisfactory because they were obtained following a stereochemical guideline derived from theory and single crystal structure data of nucleic acid components. The same stereochemical guideline also led to right handed duplexes for B- and D-forms of DNA which have stereochemically preferred conformation and hence are superior to those given by Arnott and coworkers.
Resumo:
A zonally averaged version of the Goddard Laboratory for Atmospheric Sciences (GLAS) climate model is used to study the sensitivity of the northern hemisphere (NH) summer mean meridional circulation to changes in the large scale eddy forcing. A standard solution is obtained by prescribing the latent heating field and climatological horizontal transports of heat and momentum by the eddies. The radiative heating and surface fluxes are calculated by model parameterizations. This standard solution is compared with the results of several sensitivity studies. When the eddy forcing is reduced to 0.5 times or increased to 1.5 times the climatological values, the strength of the Ferrel cells decrease or increase proportionally. It is also seen that such changes in the eddy forcing can influence the strength of theNH Hadley cell significantly. Possible impact of such changes in the large scale eddy forcing on the monsoon circulation via changes in the Hadley circulation is discussed. Sensitivity experiments including only one component of eddy forcing at a time show that the eddy momentum fluxes seem to be more important in maintaining the Ferrel cells than the eddy heat fluxes. In the absence of the eddy heat fluxes, the observed eddy momentum fluxes alone produce subtropical westerly jets which are weaker than those in the standard solution. On the other hand, the observed eddy heat fluxes alone produce subtropical westerly jets which are stronger than those in the standard solution.
Resumo:
Based upon a stereochemical guideline, two topologically distinct types of helicalduplexes have been deduced for a polynucleotide duplex with alternating purine pyrimidine sequence (PAPP): (a) right-handed uniform (RU) helix and (b) left-handed zig-zag (LZ) helix. Both structures have trinucleoside diphosphate as the basic unit wherein the purine pyrimidine fragment has a different conformation from the pyrimidine-purine fragment. Thus, RU and LZ helices represent two different classes of sequence-dependent molecular conformations for PAPP. The conformationalf eatures of an RU helix of PAPP in B-form and three LZ-helices for B-, D- and Z-forms are discussed.
Resumo:
A reliable protection against direct lightning hit is very essential for satellite launch pads. In view of this, suitable protection systems are generally employed. The evaluation of efficacy of the lightning protection schemes among others requires an accurate knowledge of the consequential potential rise at the struck point and the current injected into soil at the earth termination. The present work has made a detailed effort to deduce these quantities for the lightning protection scheme of the Indian satellite launch pad-I. A reduced scale model of the system with a frequency domain approach is employed for the experimental study. For further validation of the experimental approach, numerical simulations using numerical electromagnetic code-2 are also carried out on schemes involving single tower. The study results on the protection system show that the present design is quite safe with regard to top potential rise. It is shown that by connecting ground wires to the tower, its base current and, hence, the soil potential rise can be reduced. An evaluation of an alternate design philosophy involving insulated mast scheme is also made. The potential rise in that design is quantified and the possibility of a flashover to supporting tower is briefly looked into. The supporting tower is shown to have significant induced currents.
Resumo:
Hemispherical colloidal nanowells or microwells with hollow interiors are becoming increasingly important for the encapsulation of functional materials. There has been rapid progress to develop new methods to obtain such structures. In this work, we present emulsification approach to generate hemisphere and microcapsules of biocompatible organic polymer. The precise control over the size is exhibited by applying variable vortex effect. The hemispheres and microcapsules of a copolymer (BPVA-PVA) were characterized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These structures were used for loading of hydrophilic molecules and submicron colloidal particles to demonstrate their potential application. The introduction of hydrophobic groups on poly(vinyl alcohol) was crucial to obtain these structures.
Resumo:
alpha,beta-Dehydrophenylalanine residues constrain the peptide backbone to beta-bend conformation. A pentapeptide containing four consecutive (Delta Phe) residues has been synthesised and crystallised. The peptide Boc-LAla-Delta Phe-Delta Phe-Delta Phe-Delta Phe-NHMe (C45H46N6O7, MW = 782.86) was crystallised from an acetonitrile/methanol mixture. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1) With a = 19.455(6), b = 20.912(9), c = 11.455(4) Angstrom and Z = 4. The X-ray (MoKalpha, lambda = 0.7107 Angstrom) intensity data were collected using the Rigaku-AFC7 diffractrometer. The crystal structure was determined by direct methods and refined using the least-squares technique, R = 8.41% for 1827 reflections with \F-o\ > 4 sigma\F-o\. The molecule contains the largest stretch of consecutive dehydrophenylalanine residues whose crystal structure has been determined so far. The peptide adopts left-handed 3(10)-helical conformation despite the presence of LAla at the N-terminus. The mean phi, psi values, averaged across the last four residues are 56.8 degrees and 17.5 degrees, respectively. There are four 4-->1 intramolecular hydrogen bonds, characteristic of the 3(10)-helix. In the crystal each molecule interacts with four crystallographically symmetric molecules with one hydrogen bond each.
Resumo:
The insulated mast scheme for the lightning protection system can be found in a few practical designs. Many advantages over conventional protection system are some times envisaged. However, the technical literature on the analysis of such schemes and further quantification of their protection efficacy is rather scarce. As a first step to address this problem, the present work is taken up and the potential rise at the top and ground end currents in insulating mast scheme with single tower is investigated for several tower heights and pertinent values of other parameters. The quantities that are investigated are the potential difference across the insulation and ground end currents for both tower and the ground wires. Quantifications are carried out for the relevant range of stroke current front times. The influence of number of ground wires, their earthing location and to a limited extent, the length of the insulating support have been ascertained. Some relevant discussion on insulation strength is made. These findings are quite novel and aid in quantification of the practical efficacy of the insulated mast scheme. The level of induction to the support tower and possible flashover to the same are not in favour of this scheme.
Resumo:
A lightning return stroke model for a downward flash is proposed. The model includes underlying physical phenomena governing return stroke evolution, namely, electric field due to charge distributed along the leader and cloud, transient enhancement of series channel conductance at the bridging regime, and the nonlinear variation of channel conductance, which supports the return stroke current evolution. Thermal effects of free burning arc at the stroke wave front and its impact on channel conductance are studied. A first-order arc model for determining the dynamic channel conductance along with a field-dependent conductivity for corona sheath is used in the model. The model predicts consistent current propagation along the channel with regard to current amplitude and return stroke velocity. The model is also capable of predicting the remote electromagnetic fields that are consistent with the experimental observations.