2 resultados para Left Ventricular Noncompaction 1

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the asymmetric chiral gauging of the WZW models give rise to consistent string backgrounds. The target space structure of the chiral gauged SL(2,R) WZW model, with the gauging of subgroups SO(1, 1) in the left and U(1) in the right moving sector, is obtained. We then analyze the symmetries of the background and show the presence of a non-trivial isometry in the canonical parametrization of the WZW model. Using these results, the equivalence of the asymmetric models with the symmetric ones is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boxicity of a graph H, denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in R(k). In this paper we show that for a line graph G of a multigraph, box(G) <= 2 Delta (G)(inverted right perpendicularlog(2) log(2) Delta(G)inverted left perpendicular + 3) + 1, where Delta(G) denotes the maximum degree of G. Since G is a line graph, Delta(G) <= 2(chi (G) - 1), where chi (G) denotes the chromatic number of G, and therefore, box(G) = 0(chi (G) log(2) log(2) (chi (G))). For the d-dimensional hypercube Q(d), we prove that box(Q(d)) >= 1/2 (inverted right perpendicularlog(2) log(2) dinverted left perpendicular + 1). The question of finding a nontrivial lower bound for box(Q(d)) was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795-5800]. The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once). (C) 2011 Elsevier B.V. All rights reserved.