1 resultado para Learning objects
em Indian Institute of Science - Bangalore - Índia
Filtro por publicador
- JISC Information Environment Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (35)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (4)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Boston University Digital Common (12)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (21)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Dalarna University College Electronic Archive (2)
- Digital Peer Publishing (4)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Helda - Digital Repository of University of Helsinki (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico do Porto, Portugal (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (7)
- Ministerio de Cultura, Spain (11)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Queensland University of Technology - ePrints Archive (678)
- RDBU - Repositório Digital da Biblioteca da Unisinos (10)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (28)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Uruguai (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (13)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (9)
- University of Washington (3)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Relaxation labeling processes are a class of mechanisms that solve the problem of assigning labels to objects in a manner that is consistent with respect to some domain-specific constraints. We reformulate this using the model of a team of learning automata interacting with an environment or a high-level critic that gives noisy responses as to the consistency of a tentative labeling selected by the automata. This results in an iterative linear algorithm that is itself probabilistic. Using an explicit definition of consistency we give a complete analysis of this probabilistic relaxation process using weak convergence results for stochastic algorithms. Our model can accommodate a range of uncertainties in the compatibility functions. We prove a local convergence result and show that the point of convergence depends both on the initial labeling and the constraints. The algorithm is implementable in a highly parallel fashion.