7 resultados para Learning context
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new clustering technique, based on the concept of immediato neighbourhood, with a novel capability to self-learn the number of clusters expected in the unsupervized environment, has been developed. The method compares favourably with other clustering schemes based on distance measures, both in terms of conceptual innovations and computational economy. Test implementation of the scheme using C-l flight line training sample data in a simulated unsupervized mode has brought out the efficacy of the technique. The technique can easily be implemented as a front end to established pattern classification systems with supervized learning capabilities to derive unified learning systems capable of operating in both supervized and unsupervized environments. This makes the technique an attractive proposition in the context of remotely sensed earth resources data analysis wherein it is essential to have such a unified learning system capability.
Resumo:
The concept of feature selection in a nonparametric unsupervised learning environment is practically undeveloped because no true measure for the effectiveness of a feature exists in such an environment. The lack of a feature selection phase preceding the clustering process seriously affects the reliability of such learning. New concepts such as significant features, level of significance of features, and immediate neighborhood are introduced which result in meeting implicitly the need for feature slection in the context of clustering techniques.
Resumo:
A new automata model Mr,k, with a conceptually significant innovation in the form of multi-state alternatives at each instance, is proposed in this study. Computer simulations of the Mr,k, model in the context of feature selection in an unsupervised environment has demonstrated the superiority of the model over similar models without this multi-state-choice innovation.
Resumo:
The concept of feature selection in a nonparametric unsupervised learning environment is practically undeveloped because no true measure for the effectiveness of a feature exists in such an environment. The lack of a feature selection phase preceding the clustering process seriously affects the reliability of such learning. New concepts such as significant features, level of significance of features, and immediate neighborhood are introduced which result in meeting implicitly the need for feature slection in the context of clustering techniques.
Resumo:
The impulse response of a typical wireless multipath channel can be modeled as a tapped delay line filter whose non-zero components are sparse relative to the channel delay spread. In this paper, a novel method of estimating such sparse multipath fading channels for OFDM systems is explored. In particular, Sparse Bayesian Learning (SBL) techniques are applied to jointly estimate the sparse channel and its second order statistics, and a new Bayesian Cramer-Rao bound is derived for the SBL algorithm. Further, in the context of OFDM channel estimation, an enhancement to the SBL algorithm is proposed, which uses an Expectation Maximization (EM) framework to jointly estimate the sparse channel, unknown data symbols and the second order statistics of the channel. The EM-SBL algorithm is able to recover the support as well as the channel taps more efficiently, and/or using fewer pilot symbols, than the SBL algorithm. To further improve the performance of the EM-SBL, a threshold-based pruning of the estimated second order statistics that are input to the algorithm is proposed, and its mean square error and symbol error rate performance is illustrated through Monte-Carlo simulations. Thus, the algorithms proposed in this paper are capable of obtaining efficient sparse channel estimates even in the presence of a small number of pilots.
Resumo:
We propose a randomized algorithm for large scale SVM learning which solves the problem by iterating over random subsets of the data. Crucial to the algorithm for scalability is the size of the subsets chosen. In the context of text classification we show that, by using ideas from random projections, a sample size of O(log n) can be used to obtain a solution which is close to the optimal with a high probability. Experiments done on synthetic and real life data sets demonstrate that the algorithm scales up SVM learners, without loss in accuracy. 1
Resumo:
Head pose classification from surveillance images acquired with distant, large field-of-view cameras is difficult as faces are captured at low-resolution and have a blurred appearance. Domain adaptation approaches are useful for transferring knowledge from the training (source) to the test (target) data when they have different attributes, minimizing target data labeling efforts in the process. This paper examines the use of transfer learning for efficient multi-view head pose classification with minimal target training data under three challenging situations: (i) where the range of head poses in the source and target images is different, (ii) where source images capture a stationary person while target images capture a moving person whose facial appearance varies under motion due to changing perspective, scale and (iii) a combination of (i) and (ii). On the whole, the presented methods represent novel transfer learning solutions employed in the context of multi-view head pose classification. We demonstrate that the proposed solutions considerably outperform the state-of-the-art through extensive experimental validation. Finally, the DPOSE dataset compiled for benchmarking head pose classification performance with moving persons, and to aid behavioral understanding applications is presented in this work.