175 resultados para Latter lanthanides and yttrium
em Indian Institute of Science - Bangalore - Índia
Resumo:
Dimethyl sulphoxide complexes of lanthanide and yttrium nitrates of the general formula M(DMSO)n(NO3)3 where M = La, Ce, Pr, Nd, Sm or Gd; n = 4 and M = Y, Ho or Yb; n = 3 have been isolated and characterized. The i.r. data besides excluding the presence of D3h nitrate, reveal co-ordination through the oxygen atom of the dimethyl sulphoxide. The complexes are monomeric in acetonitrile. Molecular conductance data in acetone, acetonitrile, dimethyl formamide and dimethyl sulphoxide suggest a co-ordination number of eight for the lighter lanthanides and seven for yttrium and the heavier lanthanides.
Resumo:
The rare earth iron garnets Ln3Fe5O12 and Y3AlxFe5-xO12, where x=1.0-5.0, and Y1.5Gd1.5Al0.2Fe4.8O12 have been prepared by the combustion of redox mixtures containing corresponding metal nitrates and oxalyl dihydrazide, i.e. C2H6N4O2 at 350-degrees-C. The solid combustion products are amorphous, submicrometre-sized powders which, on heating at 750-degrees-C for 3 h, yield crystalline single-phase garnets. The particle size of the garnets is below 1 mum and the surface area ranges from 16 to 90 m2 g-1. Yttrium iron garnet could be sintered to a density of more than 95% at 1200-degrees-C for 3 h, giving an average grain size of 3-5 mum.
Resumo:
Standard Gibbs energies of formation of oxysulfides of cerium and yttrium from their respective oxedes were determined using solid oxide galvanic cells incorporating calcia-stabilized zirconia as the electrolyte in the temperature range 870–1120 K. The sulfur potential over the electrode containing the oxide and oxysulfide was fixed by a buffer mixture of Ag + Ag2S. A small amount of CaH2 was added to the buffer to generate an equilibrium ratio of H2S and H2 species in a closed system containing the buffer and the electrode. The sulfur potential is transmitted to the electrode via the gas phase. The results can be summarized by the equations 2left angle bracketCeO2right-pointing angle bracket+1/2(S2)→left angle bracketCe2O2Sright-pointing angle bracket+(O2) ΔG°=430600−109·7T(±400)J mol−1 left angle bracketY2O3right-pointing angle bracket+1/2(S2)→left angle bracketY2O2Sright-pointing angle bracket+1/2(O2) ΔG°=114780−1·45T(±200)J mol−1 The values are compared with data reported in the literature. The stability field diagram for the Ce---O---S system has been developed using the results of this study for Ce2O2S and data for other phases from the literature.
Resumo:
The kinetics of the polymorphic transformation in antimony trioxide from metastable orthorhombic valentinite to cubic senarmontite has been studied in polycrystalline material between 490 and 530°C. Quantitative analysis of the mixtures was done using infrared spectrophotometry. The kinetic data was analyzed and the activation energy for the process was obtained: (i) On the basis of Avrami's equation, which is derived on the basis of a nucleation and growth mechanism; and (ii) from the time required for a constant fraction of the transformation to take place. The values obtained were 50.8 and 46.0 kcal/mole. Observations have also been made on partly transformed single crystals of valentinite using a polarizing microscope. The latter studies and the value of the activation energy suggest that a better understanding of the transformation could be obtained on the basis of a vapor phase mechanism.
Resumo:
Miscibilities of some poly[aromatic (meth)acrylatels namely, poly(pheny1 acrylate) (PPA), poly(pheny1 methacrylate) (PPMA), poly(benzy1 acrylate) (PBA), and poly(benzy1 methacrylate) (PBMAY polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styreneacrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (B,j.’sw) ere calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBW SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.
Resumo:
Miscibilities of some poly[aromatic (meth)crylate]s namely, poly(phenyl acrylate) (PPA, poly(phenyl methacrylate) (PPMA), poly(benzyl acrylate) (PBA), and poly(benzyl methacrylate) (PBMA)/polystyrene blends, have been studied through the so-called copolymer effect by incorporating acrylonitrile units in PS chains. In these systems, miscibility occurs on account of the strong repulsion between the acrylonitrile and styrene units in the copolymer. PBA and PBMA were blended with different styrene-acrylonitrile (SAN) copolymers. A miscibility window has been identified for the latter system, and from these limits, the binary interaction energy density parameters (Bij's) were calculated. Using these values, the miscibilities in other homopolymer-copolymer and copolymer-copolymer systems containing benzyl methacrylate, acrylonitrile, and styrene monomer units have been predicted and subsequently verified experimentally. The miscibility window limits in poly[aromatic (meth)acrylate]s/SAN copolymer blends have been compared. PBA does not exhibit a miscibility window with SAN copolymers, which has been explained by the weak intramolecular hydrogen bonding in PBA. The miscibility window in the PBMA/SAN copolymer system, as observed by DSC, shows a considerable narrowing in nonradiative energy transfer (NRET) measurements, as this technique is more sensitive.
Resumo:
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
Resumo:
We prove a result on the structure of finite proper holomorphic mappings between complex manifolds that are products of hyperbolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.
Resumo:
Background: Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. Methodology/Principal Findings: We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. Conclusions/Significance: In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway.
Resumo:
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1-5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 degrees C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50-150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 degrees C along with relatively resolved glow peak at 180 degrees C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 degrees C along with two well defined peaks at similar to 215 and 275 degrees C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure and hydrogen storage capability of Yttrium-doped BNNTs has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site in the center of the hexagonal ring with a binding energy of 0.8048eV. Decorating by Y makes the system half-metallic and magnetic with a magnetic moment of 1.0 mu(B). Y decorated Boron-Nitride (8,0) nanotube can adsorb up to five hydrogen molecules whose average binding energy is computed as 0.5044eV. All the hydrogen molecules are adsorbed with an average desorption temperature of 644.708 K. Taking that the Y atoms can be placed only in alternate hexagons, the implied wt% comes out to be 5.31%, a relatively acceptable value for hydrogen storage materials. Thus, this system can serve as potential hydrogen storage medium.
Resumo:
The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.
Resumo:
Parameterization of sensible heat and momentum fluxes as inferred from an analysis of tower observations archived during MONTBLEX-90 at Jodhpur is proposed, both in terms of standard exchange coefficients C-H and C-D respectively and also according to free convection scaling. Both coefficients increase rapidly at low winds (the latter more strongly) and with increasing instability. All the sensible heat flux data at Jodhpur (wind speed at 10m <(U)over bar (10)>, < 8ms(-1)) also obey free convection scaling, with the flux proportional to the '4/3' power of an appropriate temperature difference such as that between 1 and 30 m. Furthermore, for <(U)over bar (10)> < 4 ms(-1) the momentum flux displays a linear dependence on wind speed.
Resumo:
RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNaseS and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model, According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.