8 resultados para Latent Semantic Analysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
Background: Mycobacterium tuberculosis, a causative agent of chronic tuberculosis disease, is widespread among some animal species too. There is paucity of information on the distribution, prevalence and true disease status of tuberculosis in Asian elephants (Elephas maximus). The aim of this study was to estimate the sensitivity and specificity of serological tests to diagnose M. tuberculosis infection in captive elephants in southern India while simultaneously estimating sero-prevalence. Methodology/Principal Findings: Health assessment of 600 elephants was carried out and their sera screened with a commercially available rapid serum test. Trunk wash culture of select rapid serum test positive animals yielded no animal positive for M. tuberculosis isolation. Under Indian field conditions where the true disease status is unknown, we used a latent class model to estimate the diagnostic characteristics of an existing (rapid serum test) and new (four in-house ELISA) tests. One hundred and seventy nine sera were randomly selected for screening in the five tests. Diagnostic sensitivities of the four ELISAs were 91.3-97.6% (95% Credible Interval (CI): 74.8-99.9) and diagnostic specificity were 89.6-98.5% (95% CI: 79.4-99.9) based on the model we assumed. We estimate that 53.6% (95% CI: 44.6-62.8) of the samples tested were free from infection with M. tuberculosis and 15.9% (97.5% CI: 9.8 - to 24.0) tested positive on all five tests. Conclusions/Significance: Our results provide evidence for high prevalence of asymptomatic M. tuberculosis infection in Asian elephants in a captive Indian setting. Further validation of these tests would be important in formulating area-specific effective surveillance and control measures.
Resumo:
Automatic identification of software faults has enormous practical significance. This requires characterizing program execution behavior and the use of appropriate data mining techniques on the chosen representation. In this paper, we use the sequence of system calls to characterize program execution. The data mining tasks addressed are learning to map system call streams to fault labels and automatic identification of fault causes. Spectrum kernels and SVM are used for the former while latent semantic analysis is used for the latter The techniques are demonstrated for the intrusion dataset containing system call traces. The results show that kernel techniques are as accurate as the best available results but are faster by orders of magnitude. We also show that latent semantic indexing is capable of revealing fault-specific features.
Resumo:
Non-negative matrix factorization [5](NMF) is a well known tool for unsupervised machine learning. It can be viewed as a generalization of the K-means clustering, Expectation Maximization based clustering and aspect modeling by Probabilistic Latent Semantic Analysis (PLSA). Specifically PLSA is related to NMF with KL-divergence objective function. Further it is shown that K-means clustering is a special case of NMF with matrix L2 norm based error function. In this paper our objective is to analyze the relation between K-means clustering and PLSA by examining the KL-divergence function and matrix L2 norm based error function.
Resumo:
Latent variable methods, such as PLCA (Probabilistic Latent Component Analysis) have been successfully used for analysis of non-negative signal representations. In this paper, we formulate PLCS (Probabilistic Latent Component Segmentation), which models each time frame of a spectrogram as a spectral distribution. Given the signal spectrogram, the segmentation boundaries are estimated using a maximum-likelihood approach. For an efficient solution, the algorithm imposes a hard constraint that each segment is modelled by a single latent component. The hard constraint facilitates the solution of ML boundary estimation using dynamic programming. The PLCS framework does not impose a parametric assumption unlike earlier ML segmentation techniques. PLCS can be naturally extended to model coarticulation between successive phones. Experiments on the TIMIT corpus show that the proposed technique is promising compared to most state of the art speech segmentation algorithms.
Resumo:
Incremental semantic analysis in a programming environment based on Attribute Grammars is performed by an Incremental Attribute Evaluator (IAE). Current IAEs are either table-driven or make extensive use of graph structures to schedule reevaluation of attributes. A method of compiling an Ordered Attribute Grammar into mutually recursive procedures is proposed. These procedures form an optimal time Incremental Attribute Evaluator for the attribute grammar, which does not require any graphs or tables.
Resumo:
Facet-based sentiment analysis involves discovering the latent facets, sentiments and their associations. Traditional facet-based sentiment analysis algorithms typically perform the various tasks in sequence, and fail to take advantage of the mutual reinforcement of the tasks. Additionally,inferring sentiment levels typically requires domain knowledge or human intervention. In this paper, we propose aseries of probabilistic models that jointly discover latent facets and sentiment topics, and also order the sentiment topics with respect to a multi-point scale, in a language and domain independent manner. This is achieved by simultaneously capturing both short-range syntactic structure and long range semantic dependencies between the sentiment and facet words. The models further incorporate coherence in reviews, where reviewers dwell on one facet or sentiment level before moving on, for more accurate facet and sentiment discovery. For reviews which are supplemented with ratings, our models automatically order the latent sentiment topics, without requiring seed-words or domain-knowledge. To the best of our knowledge, our work is the first attempt to combine the notions of syntactic and semantic dependencies in the domain of review mining. Further, the concept of facet and sentiment coherence has not been explored earlier either. Extensive experimental results on real world review data show that the proposed models outperform various state of the art baselines for facet-based sentiment analysis.
Resumo:
Song-selection and mood are interdependent. If we capture a song’s sentiment, we can determine the mood of the listener, which can serve as a basis for recommendation systems. Songs are generally classified according to genres, which don’t entirely reflect sentiments. Thus, we require an unsupervised scheme to mine them. Sentiments are classified into either two (positive/negative) or multiple (happy/angry/sad/...) classes, depending on the application. We are interested in analyzing the feelings invoked by a song, involving multi-class sentiments. To mine the hidden sentimental structure behind a song, in terms of “topics”, we consider its lyrics and use Latent Dirichlet Allocation (LDA). Each song is a mixture of moods. Topics mined by LDA can represent moods. Thus we get a scheme of collecting similar-mood songs. For validation, we use a dataset of songs containing 6 moods annotated by users of a particular website.
Resumo:
In this paper, we present a novel approach that makes use of topic models based on Latent Dirichlet allocation(LDA) for generating single document summaries. Our approach is distinguished from other LDA based approaches in that we identify the summary topics which best describe a given document and only extract sentences from those paragraphs within the document which are highly correlated given the summary topics. This ensures that our summaries always highlight the crux of the document without paying any attention to the grammar and the structure of the documents. Finally, we evaluate our summaries on the DUC 2002 Single document summarization data corpus using ROUGE measures. Our summaries had higher ROUGE values and better semantic similarity with the documents than the DUC summaries.